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Abstract
Brain computer interfaces (BCI) are becoming in-

creasingly popular in the gaming and entertainment in-
dustries. Consumer-grade BCI devices are available for
a few hundred dollars and are used in a variety of appli-
cations, such as video games, hands-free keyboards, or as
an assistant in relaxation training. There are application
stores similar to the ones used for smart phones, where
application developers have access to an API to collect
data from the BCI devices.

The security risks involved in using consumer-grade
BCI devices have never been studied and the impact of
malicious software with access to the device is unex-
plored. We take a first step in studying the security impli-
cations of such devices and demonstrate that this upcom-
ing technology could be turned against users to reveal
their private and secret information. We use inexpensive
electroencephalography (EEG) based BCI devices to test
the feasibility of simple, yet effective, attacks. The cap-
tured EEG signal could reveal the user’s private informa-
tion about, e.g., bank cards, PIN numbers, area of living,
the knowledge of the known persons. This is the first
attempt to study the security implications of consumer-
grade BCI devices. We show that the entropy of the pri-
vate information is decreased on the average by approx-
imately 15 % - 40 % compared to random guessing at-
tacks.

1 Motivation

Brain-Computer Interfaces (BCIs) enable a non-
muscular communication between a user and an exter-
nal device by measuring the brain’s activities. In the last
decades, BCIs have been primarily applied in the med-
ical domain with the goal to increase the quality of life
of patients with severe neuromuscular disorders. Most
BCIs are based on electroencephalography (EEG) as it
provides a non-invasive method for recording the elec-

trical fields directly produced by neuronal synaptic ac-
tivity. The EEG signal is recorded from scalp electrodes
by a differential amplifier in order to increase the Signal-
to-Noise Ratio of the electrical signal that is attenuated
by the skull. This signal is continuously sampled (typ-
ically 128 Hz - 512 Hz) to provide a high temporal res-
olution, making EEG an ideal method for capturing the
rapid, millisecond-scale dynamics of brain information
processing with a simple setup.

Particular patterns of brain waves have been found to
differentiate neurocognitive states and to offer a rich fea-
ture space for studying neurological processes of both
disabled and healthy users. For example, EEG has
not only been used for neurofeedback therapy in atten-
tion deficit hyperactivity disorder (ADHD) [20], epilepsy
monitoring [6], and sleep disorders [28], but also to study
underlying processes of skilled performance in sports
and changes in vigilance [14, 31], in estimating alertness
and drowsiness in drivers [22] and the mental workload
of air-traffic control operators [39].

Besides medical applications, BCI devices are becom-
ing increasingly popular in the entertainment and gaming
industries. The ability to capture a user’s cognitive activ-
ities enables the development of more adaptive games
responsive to the user’s affective states, such as satis-
faction, boredom, frustration, confusion, and helps to
improve the gaming experience [26]. A similar trend
can be seen in popular gaming consoles such as Mi-
crosoft’s Xbox 360, Nintendo’s Wii, or Sony’s Playsta-
tion3, which already include different sensors to in-
fer user’s behavioral and physiological states through
pressure, heartbeat, facial and voice recognition, gaze-
tracking, and motion.

In the last couple of years, several EEG-based gam-
ing devices have made their way onto the market and be-
came available to the general public. Companies such
as Emotiv Systems [5] and NeuroSky [25] are offering
low-cost EEG-based BCI devices (e.g., see Figure 1) and
software development kits to support the expansion of



(a) An EPOC device (Emotiv Systems)

(b) A MindSet device (NeuroSky)

Figure 1: Popular consumer-grade BCI devices are avail-
able as multi-channel (EPOC) or single-channel (Mind-
Set) wireless headsets using bluetooth transmitters.

tools and games available from their application mar-
kets. Currently, there are more than 100 available appli-
cations ranging from accessibility tools, such as a mind-
controlled keyboard and mouse and hands-free arcade
games, to so-called serious games, i.e., games with a pur-
pose other than pure entertainment, such as attention and
memory training games. For example, in [2], the authors
used the Emotiv BCI device to implement a hands-free
brain-to-mobile phone dialing application.

Marketing is another field that has shown increas-
ing interest in commercial applications of BCI devices.
In 2008, The Nielsen Company (a leading market re-
search company) acquired NeuroFocus, a company spe-
cialized in neuroscience research, and it has recently de-
veloped an EEG-based BCI device called Mynd such that
“...market researchers will be able to capture the highest
quality data on consumers’ deep subconscious responses
in real time wirelessly, revolutionizing mobile in-market
research and media consumption at home.”1

In light of the progress of this technology, we be-
lieve that the trend in using EEG-based BCI devices for
non-medical applications, in particular gaming, enter-
tainment, and marketing, will continue. Given that this
technology provides information on our cognitive pro-

1NeuroFocus Press Release (March 21, 2011):
www.neurofocus.com/pdfs/Mynd NeuroFocus.pdf

Figure 2: Example photo of a videogame controlled with
the Emotiv Device.

cessing and allows inferences to be made with regard
to our intentions, conscious and unconscious interests,
or emotional responses, we are concerned with its secu-
rity and privacy aspects. More specifically, we are in-
terested in understanding how easily this technology can
be turned against its users to reveal their private infor-
mation, that is, information they would not knowingly or
willingly share. In particular, we investigate how third-
party EEG applications could infer private information
about the users, by manipulating the visual stimuli pre-
sented on screen and by analyzing the corresponding re-
sponses in the EEG signal.

1.1 Contributions

To justify how crucial the security and privacy concerns
of this upcoming technology are, we provide some con-
crete answers in terms of demonstrating practical at-
tacks using existing low-cost BCI devices. More specifi-
cally, the main contributions of this paper are:

• We explore, for the first time, EEG gaming devices
as a potential attack vector to infer secret and pri-
vate information about their users. This attack vec-
tor is entirely unexplored and qualitatively different
from previously explored side-channels. This calls
for research to analyze their potential to leak private
information before these devices gain widespread
adoption.

• We design and implement BCI experiments that
show the possibility of attacks to reveal a user’s pri-
vate and secret information. The experiments are
implemented and tested using a Emotiv EPOC BCI
device. Since 2009, this consumer-grade device has
been available on the market for the entertainment
and gaming purposes.
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• In a systematic user study, we analyze the feasibility
of these attacks and show that they are able to reveal
information about the user’s month of birth, area of
living, knowledge of persons known to the user, PIN
numbers, name of the user’s bank, and the user’s
preferred bank card.

2 A Brief Introduction to P300 Event-
Related Potentials

In this section, we provide a brief introduction to the
specifics of the EEG signal that are required to under-
stand the rationale behind this work.

An important neurophysiological phenomenon used in
studies of EEG signals is the Event-Related Potential
(ERP). An ERP is detected as a pattern of voltage change
after a certain auditory or visual stimulus is presented to
a subject. Every ERP is time-locked to the stimulus, i.e.,
the time frame at which an EEG voltage change is ex-
pected to occur is known given the timing of the stimuli.

The most prominent ERP component which is sen-
sitive to complex cognitive processing is the P300, so-
called because it can be detected as an amplitude peak
in the EEG signal at ≈ 300 ms after the stimulus (see
Figure 3). The complexity of the stimulus and individ-
ual differences contribute to the variability of the ampli-
tude and latency (e.g., the latency varies between 250 -
500 ms), yet the P300 is considered to be a fundamental
physiological component and is reliably measured (for
a recent overview of the P300 from a neuroscience per-
spective, please see, e.g., [27]). While there are two sub-
components of the P300, called P3a and P3b, both are
related to complex cognitive processing, such as recog-
nition and classification of external stimuli. In this paper,
we take advantage of the subcomponent P3b of the P300,
and for the sake of simplicity we will refer to it as the
P300, which is also a convention in neuroscience.

The P300 is elicited when subjects discriminate be-
tween task-relevant and task-irrelevant stimuli using a
so-called “oddball paradigm” (for more information, see,
e.g., [16]). During an oddball task the number of task-
relevant stimuli (called target stimuli) is less frequent
than the number of task-irrelevant stimuli (called non-
target). Probably the most well-known application of the
P300 in an oddball task is the P300-Speller. In this ap-
plication the alphanumeric characters are arranged in a
matrix where rows and columns flash on the screen in
a rapid succession. The target stimulus is the charac-
ter that a subject desires to spell and the P300 is evoked
each time the target letter is flashed due to a neuronal
response triggered by increased attention of recognition.
This application has been used to establish a communi-
cation channel for patients with locked-in syndrome or

with severe neurodegenerative disorders.
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Figure 3: The P300 ERP elicited as a brain response to
a target stimuli (in this experiment the non-target stimuli
were pictures of unknown faces, while the target stimuli
was the picture showing President Obama).

The P300 is seen in response to target stimuli defined
by the task, but it has also been observed to be elicited
during stimuli that are personally meaningful to partic-
ipants. For example, if a random sequence of personal
names is presented to a subject, the P300 will be the
largest during the presentation of the subject’s own name
[32]. Likewise, it has been shown that the P300 discrim-
inates familiar from unfamiliar faces within randomly
presented sequences [24].

3 BCI Attacks: Threat Model and
Assumptions

In this section, we explore a number of possible scenar-
ios in which consumer EEG devices could be abused to
capture sensitive or private information from users. Cur-
rently, both Emotiv and NeuroSky have “App Stores”
where the users can download a wide variety of appli-
cations. Similarly to application stores for smart phones,
the applications are developed by third parties that rely
on a common API to access the devices. In the case of
the EEG devices, this API provides unrestricted access to
the raw EEG signal. Furthermore, such applications have
complete control over the stimuli that can be presented to
the users.

In this scenario, the attacker is a malicious third-party
developer of applications that are using EEG-based BCI
devices. Its goal is to learn as much information as pos-
sible about the user. Hence, we are neither assuming any
malware running on the machine of the victim nor a tam-
pered device, just “brain spyware”, i.e., a software in-
tentionally designed to detect private information. Our
attacker model cannot access more computer resources
than any third party application for the respective BCI
device. The attacker can read the EEG signal from the
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device and can display text, videos, and images on the
screen. Therefore, the attacker can specifically design
the videos and images shown to the user to maximize the
amount of information leaked while trying to conceal the
attacks.

The type of information that could be discovered by
such an attack is only bound by the quality of the signal
coming from the EEG device and the techniques used
to extract the signal. We note that all involved parties
(users of BCI devices, their developers, and also attack-
ers) share the same objective: to maximize the signal
quality in order to best perform their task. Hence, it is
expected that the signal and the measurement processes
will improve and, as a result, facilitate the attacks.

In this work we will focus on categorization tasks, in
which the mind of the user is probed to detect whether
certain stimuli (faces, banks, locations) are familiar to or
relevant for the user. However, we note that in the future
such attack could be extended to include other sensitive
information. For instance, EEG devices have been used,
under optimized lab conditions, to study prejudices, sex-
ual orientation, religious beliefs [18], and deviant sexual
interests [38, 10].

At the moment, low-cost devices are still very noisy
and need a calibration phase to work properly (three min-
utes in our experiments). However, we note that the at-
tacker could find a natural situation in which to expose
the user to target stimuli to extract information and thus
gather enough data to succeed in an unnoticed way. Also,
such a calibration phase can be concealed in the normal
training phase that EEG applications require for proper
functioning and that the user is willing to support. More-
over, we expect that BCI devices will become increas-
ingly robust and accurate in the future, resolving many
current technical problems.

The experiments presented in this study are meant to
show feasibility in favorable conditions. The subjects
were partially cooperating in an attack situation and were
following our instructions. However, we minimized the
interaction between the supervisor and subjects to sim-
ulate a realistic environment, where a user is only inter-
acting with his computer (see Appendix A).

4 Experimental Design and Results

The main question, which this paper attempts to answer
is: Can the signal captured by a consumer-grade EEG
device be used to extract potentially sensitive informa-
tion from the users? In the following, we detail the tech-
nical setup, the experimental design, and the analytical
methods of our experiments.

Figure 4: Experimental setup. The instructor sits be-
hind the curtain to minimize interaction during the ex-
periments. In this case, a sequence of credit cards is pre-
sented to the user.

4.1 The Setup

After obtaining the approval of the Institutional Review
Board (IRB), we recruited 30 Computer Science students
for the experiments. For two participants, the experi-
ments could not be conducted due to faulty equipment
(low battery on the EEG device). Of the 28 participants
remaining, 18 were male and 10 female. In total, the ex-
periment lasted about 40 minutes. The participants were
informed that they were going to participate in an exper-
iment involving the privacy implications of using gam-
ing EEG devices, but we explained neither the details of
the experiment nor our objectives. Each participant was
seated in front of the computer used for the experiments
(see Figure 4). The operator then proceeded to mount the
Emotiv EEG device on the participants.

4.2 The Protocol

After the initial setup, the participants were asked to try
to remain relaxed for the entire duration of the experi-
ments, as blinking or other face movements cause signif-
icant noise. The exact script used during the experiments
can be found in Appendix A. The interaction with the
participants was kept as short and concise as possible.
The order of the experiments was kept fixed in the order
found in Appendix A.

Each experiment consisted of three main steps:

1. (Optional) Brief verbal explanation of the task by
the operator;

2. (Optional) Message on screen for 2 seconds;

3. Images being flashed in random order for the dura-
tion of the experiment.
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(a) ATM (b) Debit Card

(c) Geolocation (d) People

Figure 5: Layout of four of the experiments: Bank
ATMs, Debit Cards, Geolocation and People. Each
frame shows how the stimuli were flashed on the screen.

Each image was shown to the users for a fixed duration
of 250ms. On the screen in Figure 4, a photo is being
shown to a test participant.

The time of the target and non-target stimuli and the
stimulus identifiers were recorded alongside the raw sig-
nal coming from the EEG device. After the experiment,
we used the classification techniques detailed in Sec-
tion 4.4 to infer information about the secrets of the par-
ticipant.

4.3 The Experimental Scenarios
In this section, we describe the calibration of the device
and six different experiments. In each experiment, the
attacker tries to gain information about a different secret.
Each experiment lasted approximately 90 seconds.

4.3.1 Training Phase

This experiment was set up to learn a model to detect the
P300 signal from each user. The users were presented
with a randomly permuted sequence of numbers from 0
to 9 and were asked by the operator to count the number
of occurrences of a target number x. Each number was
shown 16 times, with a stimulus duration of 250ms and a
pause between stimuli randomly chosen between 250ms
and 375ms. At the end of experiment the participants
were asked for their count to check for correctness.

We also developed a method to calibrate the classifier
without this active training phase. This could be used for
a concealed attack in cases where the intended applica-
tion of the user does not require the detection of P300.
We explain this on-the-fly calibration phase in Section 5.

4.3.2 Experiment 1: Pin Code

This experiment has the goal to gather partial informa-
tion about a user’s chosen 4-digit PIN. Given the sen-
sitivity in studying the users’ real PINs, we asked the
participants to choose and memorize a randomly gener-
ated PIN just for the experiment. Furthermore, the par-
ticipants were asked not to reveal the PIN until after the
end of the experiment session. The participants were told
that there were no special instructions for the experiment,
e.g., no counting numbers. They were just informed that,
at the end of the experiment, they would be asked to enter
the first digit of their PIN (refer to Appendix A for the
exact script). In this way, we bring the information of in-
terest to the attention of the user which makes the subject
focus on the desired stimulus without requiring their ac-
tive support of the classifier. After the instructions were
given, the operator started the experiment. There was no
on-screen message shown at the beginning of the exper-
iment. The experiment images consisted of a sequence
of randomly permuted numbers between 0 and 9 that
were shown on the screen one by one. Each number was
shown 16 times and the experiment lasted approximately
90 seconds.

4.3.3 Experiment 2: Bank Information

The aim of this experiment was to obtain the name of the
bank of the participant by reading their response to visual
stimuli that involved photos related to banks. The first it-
eration of this experiment, whose results are not reported,
consisted of showing the logo of 10 different banks2. The
intuition was that the participants would show a higher
response when seeing the logo of their bank. However,
this attack was unsuccessful. After de-briefing with the
early test participants, we realized that they simply rec-
ognized the logos of all the banks.

In the second and final iteration of the experiment, we
showed two different sets of images: automatic teller ma-
chines (ATMs) and credit cards. Rationale for choosing
to display ATM or credit card photos, rather than logo
images, is that while users might be familiar with all lo-
gos, they might be only familiar with the look of their
own local bank ATM and debit card. The results are re-
ported in Section 5.

The protocol for this experiment was as follows. Each
participant was asked by the operator whether they were
a customer of one of the banks in a list. Four partici-
pants answered negatively, therefore the experiment was
skipped. In case of an affirmative answer, the experi-
ment was started. The screen in front of the participants
showed the question “What is the name of your bank?”

2List of banks: Bank of America, Chase, Wells Fargo, ING, Bar-
clays, Citi Bank, Postbank, Unicredit, Deutsche Bank
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Figure 6: Stimuli for the debit card experiment. Each
card was shown separately, full-screen, for the short
stimulus duration.

for 2 seconds. Then, for the ATM experiment, images of
teller machines were flashed on the screen. For the credit
card experiment, images of credit cards were flashed.

4.3.4 Experiment 3: Month of Birth

The operator did not give any specific instructions to the
participants and only informed them that the instructions
would be provided on the screen. The participants were
simply asked in which month they were born by an on-
screen message that lasted for 2 seconds, then, a ran-
domly permuted sequence of the names of the months
was shown on the screen.

In many access-restricted websites the date of birth or
similar information serves as a backup function for re-
setting a user’s password. If an attacker needs this infor-
mation, the BCI device could provide a potential attack
vector.

4.3.5 Experiment 4: Face Recognition

For this experiment, the operator again did not give
any specific instruction to the participants and only in-
formed them that the instructions would be provided on
the screen. The participants were simply asked “Do you
know any of these people?” by an on-screen message
that lasted 2 seconds. Then the images of people were
randomly flashed for the duration of the experiment.

The goal of this experiment was to understand whether
we could infer who the participants knew by reading their
EEG response when being showed a sequence of photos
of known and unknown people. We used photos of 10
unknown persons and one photo of the current President
of the United States of America, Barack Obama. The
photo of the president was chosen because, being in a
US institution, we were confident that each participant
would recognize the President.

One interesting application of such an attack would be
scenarios in which the knowledge of particular individ-
ual is used as a form of authentication. For example,
in recent years, Facebook has started showing photos of
friends for the purpose of account verification 3.

4.3.6 Experiment 5: Geographic Location

The purpose of this experiment was to accurately pin-
point the geographic location of the residence of the par-
ticipants. Each participant was asked if they lived in an
area close to campus. Eight participants in total did not
live close to campus and did not complete this experi-
ment. In case of an affirmative answer, the participants
were shown a sequence of highlighted maps of an area of
approximately 4 square kilometers around campus. Each
image showed the same area overall, but with a different
highlighted zone on the map.

While IP addresses provide a rather accurate way to
localize the location of a user, there are cases in which
the users actively try to hide their geographic location
using proxies. Even though our experiment showed only
a predefined map of a rather small geographic area, we
envision possible future attacks in which the true geo-
graphic location of a user is leaked by showing maps or
landmarks with increased accuracy.

While for all the other experiments we did not instruct
the user to do particular things except for watching the
screen, here we asked the users to count how often their
region was highlighted. This experiment was devised to
study the influence of active user support, as counting
assures a higher attention from the user which is known
to improve the detection of P300.

4.4 Analysis Methodology
In this section, we detail how the attacker processes and
analyzes the data and provide the specification of the data
recorded by the BCI device.

Data characteristics and acquisition The data con-
sists of several parts. The amplitudes of the EEG signal
are recorded with 14 different electrodes. Each electrode
represents one ‘channel’ of the signal. According to the
standard 10-20 system [19], the 14 channels are called 1:
‘AF3’, 2: ‘F7’, 3: ‘F3’, 4: ‘FC5’, 5: ‘T7’, 6: ‘P7’, 7:
‘O1’, 8: ‘O2’, 9: ‘P8’, 10: ‘T8’, 11: ‘FC6’, 12: ‘F4’,
13: ‘F8’, and 14: ‘AF4’. The location of the channel
electrodes can be seen in Figure 7.

Each channel is recorded at a sampling rate of 128Hz.
The software for showing stimuli to the user outputs the
time stamp for each stimulus and the indicator of the

3http://www.facebook.com/help/search/?q=
security+verification
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stimulus. In this way, the EEG signal can be related to
the stimuli.

F7 F8

O1 O2

P7 P8

T7 T8

FC5 FC6

F3 F4

AF3 AF4

Figure 7: Position of the electrodes of the EPOC device.

As explained in Section 3, our attack vector exploits
the occurrence of P300 peaks in the EEG signal triggered
by target-stimuli. This requires the attacker to be able to
reliably detect these peaks and to discriminate them from
all other EEG signals measured on non-target stimuli.
This task is very similar to the P300-Speller, where the
EEG signal for the intended letter must be discriminated
from the signal of unintended letters (as described in Sec-
tion 2). However, in contrast to the spelling scenario the
attacker is dealing with a passive user. This makes an at-
tack much harder than spelling. In our case, the user does
not intend to provide a discriminative signal for the target
stimulus. This means that the user does not support the
classifier with increased attention on the target stimulus,
as can be achieved, for instance, by counting the number
of occurrences of this stimulus. As a consequence, the
data available to the attacker is less discriminative be-
tween target and non-target stimuli than in the spelling
scenario.

An additional challenge for our attack is that the gam-
ing device we are using is not made for detecting P300.
For instance, they have more electrodes on the frontal
part of the scalp (see Figure 7). This enables them to rec-
ognize facial expressions which provide a stronger sig-
nal than the EEG signal itself and thus are more robust
for controlling games. The P300 is mostly detected at
the parietal lobe, optimally with electrodes attached at
Pz position, which is a centered on the median line at
the top of the head. As we want to investigate the attack
in a realistic home-use scenario we did not use other de-
vices optimized for P300 detection and did not adapt the
gaming device (for instance by turning it around, which
would provide more sampling points in the Pz area).

Classification of target stimuli Detecting P300 in
EEG data is a binary classification task. The input is a
set of epochs. Each epoch is associated with a stimulus.
In our setting a stimulus is an image depicted on a com-
puter screen in front of the user. Let nc be the number of
EEG channels and let f be the sampling rate of the de-
vice (in our case the signal is sampled with 128 Hz). An
epoch consists of nc time series starting tp milliseconds
prior to the stimulus and ending ta milliseconds after the
stimulus. The number of measurements per time series is
then q = (tp + ta)f . Typically, tp is a few hundred mil-
liseconds and ta is between 800 ms and 1500 ms. The
signals of all channels are concatenated and each epoch
is represented as a real vector x ∈ Rp, where p = qnc is
the dimensionality of the vector space.

The classification task consists of two phases, the
training phase and the classification phase. The in-
put of the training phase is a set of epochs Xtr =
{xtr

i ∈ Rp, i = 1...n1} and a vector of labels y ∈
{0, 1}n1 , where each label yi indicates whether the
epoch xtr

i corresponds to a target stimulus (yi = 1) or
not (yi = 0). The signal of each epoch has been recorded
while the corresponding stimulus was shown to the user
on the screen for a short time (we used 500 ms). The
stimuli labels y are known to the classifier as the sys-
tem knows what it shows to the user. Given this input,
the classifier must learn a function g that maps epochs to
target stimuli labels:

g : Rp → {0, 1} (1)
x 7→ y

In the beginning of Section 5, we explain how to practi-
cally carry out the training phase with users that actively
support this training phase and with passive users.

In the classification phase the classifier gets a collec-
tion of n2 new epochs Xtest = {xtest

i ∈ Rp, i = 1, ..., n2}
as an input and must output an estimate ŷ =
{ŷi = g(xtest

i ), i=1, ..., n2} of the corresponding labels.
This means, for each of the new epochs, the classifier
must decide whether the epoch is associated with the tar-
get stimulus or not.

The test labels ŷ provide a ranking of the K unique
stimuli presented to the user. We sort all stimuli in de-
scending order according to the number of their positive
classifications. For stimulus k this number is N (+)

k =∑
i∈Ek

ŷi. The setEk is the set of epoch indices contain-
ing all epochs that are associated with stimulus k. In this
notation i ∈ Ek means that we sum over all epochs of
stimulus k. For instance, if there are three different stim-
uli repeatedly shown to the user in random order (three
different faces, say), then the classifier would guess that
the true face (the one familiar to the user) is the face
where the most associated epochs have been classified as
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(b) non-target stimulus

Figure 8: Event-related potentials for two different stimuli. Both signals have been recorded on the left back-side of
the scalp (Channel 7: ‘O1’). The plots have been produced with EEGlab [4]. The scale of the averaged plots (bottom)
as well as the colorscale of the heatmap plots (top) are constant over the two stimuli.

target-stimulus. Figure 8 depicts event-related potentials
(ERP) for one channel and two different stimuli (target
and non-target). In this example one row of one plot rep-
resents an epoch and all rows of one plot constitute the
set Ek of epochs associated with event k.

The stimulus with the topmost positive classifications
is the estimated target-stimulus, the stimulus with the
second most positively classified epochs is ranked sec-
ond, and so on. Most classifiers output a continuous
score si for each epoch instead of binary labels ŷi. For
instance, this could be a probability si = p(yi = 1).
In such a case, we sum over all scores of each unique
stimulus k to get its vote N (+)

k =
∑

i∈Ek
si. In the ex-

periments, we will use this ranking to decide which of
the presented stimuli is the target stimulus, that is which
of the answers is the true answer for the current user.

In the following we explain two different classifiers
that we used in our experiments. The first classifier is
a boosting algorithm for logistic regression (bLogReg)
and was proposed for P300 spelling in [17]. The second
classifier is the publicly available BCI2000 P300 classi-
fier. BCI2000 uses stepwise linear discriminant analysis
(SWLDA). In [21] a set of different P300 classifiers, in-
cluding linear and non-linear support vector machines,
was compared and SWLDA performed best.

4.4.1 Boosted logistic regression

This method uses a logistic regression model as the clas-
sifier function g. The model is trained on the training
data by minimizing the negative Bernoulli log-likelihood

of the model in a stepwise fashion as proposed in [11,
12].

As follows, we briefly describe a variant, proposed in
[17], where the method has been used to design a P300
speller. The classifier consists of an ensemble ofM weak
learners. Each weak learner fm is a regression function
minimizing a quadratic cost function:

fm = argmin
f

n1∑
i=1

(
ỹi − f(xtr

i ;w)
)2

, (2)

where f(xtr
i ;w) = wTxtr

i with coefficients w ∈ Rp. The
score ỹi in Equation (2) is obtained from the first-order
condition of maximizing the logarithm of the Bernoulli
likelihood

L(gm;Xtr,y)=

n1∏
i=1

p(yi=1|xtr
i )

yi(1−p(yi=1|xtr
i ))

1−yi

(3)
with

p(yi=1|xtr
i ) =

exp(gm(xtr
i ))

exp(gm(xtr
i )) + exp(−gm(xtr

i ))
(4)

In step m of the algorithm, the current classifier gm−1
is updated by adding the new weak classifier fm: gm =
gm−1 + γmfm. Thereby, the weight γm is selected such
that the likelihood Eq. (3) is maximized.

The number of weak classifiers M controls the trade-
off between overfitting and underfitting. This number is
determined by cross-validation on random subsets of the
training data Xtr.
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Data preprocessing Before training the classifier and
prior applying it to each new observation, we process
the data in the following way. The input data consists
of nc different time series, whereas nc is the number of
channels. First we epochize the signal with a time frame
around the stimuli that starts 200 ms before the respective
stimulus and ends 1000 ms after the stimulus. Then, for
each epoch, we subtract the mean amplitude of the first
200 ms from the entire epoch as it represents the base-
line.

In order to reduce the high-frequency noise, we apply
a low-pass FIR filter with a pass band between 0.35 and
0.4 in normalized frequency units. An example of such a
preprocessed signal is depicted in Figure 3.

4.4.2 Stepwise Linear Discriminant Analysis

The BCI2000 P300 classifier uses stepwise linear dis-
criminant analysis, an extension of Fisher’s linear dis-
criminant analysis. As follows, we briefly explain these
two methods.

Fisher’s linear discriminant analysis (LDA) LDA
was first proposed in [9]. This classifier is a linear hyper-
plane that separates the observations of the two classes.
The hyperplane is parameterized by the coefficient vec-
tor w ∈ Rp which is orthogonal to the hyperplane.
A new observation xi is labeled to belong to either of
the two classes by projecting it on the class separation
wTxi. LDA assumes observations in both classes to be
Gaussian distributed with parameters (µj ,Σj), j = 1, 2
and computes the optimally separating coefficients by
w = (µtr

1 − µtr
2)(Σ

tr
1 + Σtr

2)
−1.

Stepwise Linear Discriminant Analysis (SWLDA)
SWLDA extends LDA with a feature selection mecha-
nism that sets many of the coefficients in w to zero. This
classifier is supposedly more robust to noise and was
first applied to P300 spelling in [7]. The algorithm it-
eratively adds or removes components of the coefficient
vector according to their statistical significance for the
label outcome as measured by their p-value. The thresh-
olds (padd, prem) for adding or removing features as well
as the total number of features must be pre-defined.

In our experiments we used the default configuration
of the the BCI2000 P300 classifier with 60 features and
(padd, prem) = (0.1, 0.15). The algorithm uses the 800 ms
period after the stimulus for classification.

For each stimulus presented, we sum up the scores
wTxi of the corresponding epochs in order to obtain a
ranking of the stimuli. Then, the highest ranked stimulus
is presumably the target-stimulus.

5 Results

In this section, we evaluate the classification results on
each of the experiments described in Section 4.3.

User-supported calibration and on-the fly calibration
We calibrate the classifiers on a set of training observa-
tions. Thereby, we distinguish two training situations.

In the first situation we have a partially cooperating
user, that is, a user who actively supports the training
phase of the BCI but then does not actively provide evi-
dence for the target stimulus later. This is a realistic sce-
nario. Each gamer has a strong incentive to support the
initial calibration phase of his device, because he will
benefit from a high usability and a resulting satisfying
gaming experience. The attacker can use the training
data to train his own classifier. Despite the user support-
ing the calibration phase, we do not assume that the user
actively supports the detection of target stimuli when the
attacker later carries out his attack by suddenly present-
ing new stimuli on the screen.

In the second training situation, the user is passive.
This means that the user does not support the training
phase but also does not actively try to disturb it. As a
consequence, the attacker must present a set of stimuli
where, with high probability, the user is familiar with
one of the stimuli and unfamiliar with all other stim-
uli. In this way the attacker can provide a label vector
y ∈ {0, 1}n1 that can be used for training. We used the
people experiment as training data. We showed 10 im-
ages of random people to the user as well as one image
of President Barack Obama. Assuming that i) every user
knows Obama and that ii) it is unlikely that a user knows
one of the random face images downloaded from the in-
ternet, we can use the Obama image as a target stimulus
and the others as non-target stimuli.

Success statistics We report the results of all experi-
ments in Figure 9. Each plot corresponds to one ex-
perimental scenario. The black crosses depict the re-
sults of the SWLDA classifier used by the BCI2000 P300
speller. The red diamonds are the results of boosted log-
arithmic regression (bLogReg) trained by the counting
experiment, and the blue crosses show the results for
bLogReg when trained on the people experiment. The
dashed black line depicts the expected result of a random
guess.

We depict the results in terms of a cumulative statistic
of the rank of the correct answer. This measure provides
the accuracy together with a confidence interval at the
same time as it includes the probability distribution of
the deviation from the optimal rank. The plots read as
follows. The x-axis of each plot is the rank of the correct
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(a) 1st digit PIN
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(b) Debit card
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(c) Location
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(d) Month of birth
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(f) ATM machine

Figure 9: Cumulative statistics of the ranking of the correct answer according to the classification result. The faster this
measure converges towards 100%, the better the classifier. One can directly read the confidence intervals as follows:
In more than 20% of the experiments the bLogReg classifier ranked the correct face at the first position. In more than
40% it had the correct face among the first three guesses. Please note that for the passive user, the classifier was trained
on the people experiment and the corresponding curve in Fig. 9(e) would depict the training error.

answer as estimated by the respective classifier. For in-
stance, if the correct answer in the month of birth exper-
iment is ‘April’ and the classifier ranks this month at the
third position in the classification output, then x is 3. The
y-axis is the fraction (in %) of the users having the cor-
rect answer in at most ranking position x. In our exam-
ple with the month of birth, the point (x; y) = (3; 80%)
of the SWLDA classifier means that for 80% of the users
the correct bank was among the first three guesses of
SWLDA. Please note that we truncated the y-axis at 20%
to get a better resolution of the dynamic range.

Overall, one can observe that the attack does not al-
ways reveal the correct information on the first guess.
However, the classifiers perform significantly better than
the random attack. The SWLDA classifier provided the
most accurate estimates, except for the experiment on the
PIN and the debit card.

The correct answer was found by the first guess in
20% of the cases for the experiment with the PIN, the
debit cards, people, and the ATM machine. The location
was exactly guessed for 30% of users, month of birth for
almost 60% and the bank based on the ATM machines
for almost 30%. All classifiers performed consistently
good on the location experiment where the users actively

concentrated by counting the occurrence of the correct
answer. SWLDA performed exceptionally good on the
month of birth experiment, even though this experiment
was carried out without counting.

Relative reduction of entropy In order to quantify the
information leak that the BCI attack provides, we com-
pare the Shannon entropies of guessing the correct an-
swer for the classifiers against the entropy of the random
guess attack.

This measure models the guessing attack as a random
experiment with the random variable X . Depending of
the displayed stimuli,X can take different values. For in-
stance, in the PIN experiment, the set of hypotheses con-
sists of the numbers 0 to 9 and the attack guess would
then take one out of these numbers. Now, let’s assume
we have no other information than the set of hypotheses.
Then we would guess each answer with equal probabil-
ity. This is the random attack. Let the number of possible
answers (the cardinality of the set of hypotheses) be K,
then the entropy of the random attack is log2(K).

More formally, let the ranking of a classifier clf be
a(clf) =

{
a(clf)
1 , ..., a(clf)

K

}
, where the first-ranked answer

is a(clf)
1 , the second-ranked answer is a(clf)

2 , and so on. Let
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p(a(clf)
k ) := p(X = a(clf)

k |a(clf)) be the probability that
the classifier ranks the correct answer at position k ∈ K.
Please note that the p(X = a(clf)

k ) that we will use are
empirical relative frequencies obtained from the exper-
iments instead of true probability distributions. Using
these probabilities, the empirical Shannon entropy is

H(X|a(clf)) = −
K∑

k=1

p(a(clf)
k ) log2

(
p(a(clf)

k )
)

(5)

In case of the random attack, the position of the cor-
rect answer is uniformly distributed, which results in the
said entropy H(X|a(rand)) = log2(K). In case of at-
tacking with a classifier, the attacker would pick a1, the
answer ranked highest, to maximize his success. As our
empirical results, depicted in Figure 9, suggest, the rank-
ings are not fully reliable, i.e. the answer ranked highest
is not always the correct answer. However, the ranking
statistics provide a new non-uniform distribution over the
set of possible answers. For instance, we know that for
bLogReg the empirical probability that the first-ranked
location is the correct one is p(X = a(bLogReg)

1 ) = 0.2,
the probability of the second-ranked answer to be correct
is also p(X = a(bLogReg)

2 ) = 0.2, and so on.
The redistributed success probabilities reduce the en-

tropy of the guessing experiment. We take the random
guess attack as the baseline and compare the entropies
of all other attacks against its entropy H(X|a(rand)). We
evaluate to what extent a generic classifier clf reduces the
entropy relative to H(X|a(rand)). The relative reduction
of entropy with respect to the random guess attack (in %)
is then:

r(clf) := 100
H(X|a(rand))−H(X|a(clf))

H(X|a(rand))

= 100

(
1− H(X|a(clf))

log2(K)

)
(6)

A perfect classifier always has the correct answer at
the first position, resulting in zero entropy and a relative
reduction r of 100%. A poor classifier provides a uni-
form distribution of the position of the correct rank. As a
consequence, its entropy would be maximal and the rel-
ative reduction r would be 0%. The entropy difference
directly measures the information leaked by an attack.
Thereby, comparing the classifier entropies in a relative
way enables one to compare results over different exper-
iments with different numbers of possible answers.

We report the relative reduction of entropy for each
experimental setting and for each classifier in Figure 10.
As one can see, the reduction approximately ranges from
15% to 40% for SWLDA and from 7% to 18% for the
two bLogReg variants. Please note that the plot does not
report the result of the classifier that has been trained on

the people experiment for this very experiment, as this
entropy reduction merely refers to the training error of
the classifier and provides no information on how well
the classifier generalizes to unseen data.

0 10 20 30 40 50

maps

pin

atm

debit

month

people

Reduction of entropy relative to random guess [%]

 

 

SWLDA
bLogReg
bLogreg, passive

Figure 10: Relative reduction of entropy with respect to
the random guess attack. The scale reaches from 0% (no
advantage over random guessing) to 100% (correct an-
swer always found). Please note that ’bLogReg, passive’
has been trained on the people experiment. We do not re-
port its score on this experiment, as it refers to the train-
ing error.

For most scenarios, the information leaked corre-
sponds to approximately 10% to 20% for the best clas-
sifier SWLDA with peaks for maps (32%) and month
(43%). The average information leak over all classifiers
in the maps experiment stands out compared to the other
result. The reason for this is that the maps experiment is
a counting experiment, in which the users were asked to
count the number of occurrences of the target stimulus.
This experiment was included to underline the improve-
ment in accuracy with a cooperative user.

Using Prior Knowledge to Improve Accuracy For
some secrets there exist global statistics that can improve
the success chances of the attack. For instance, often the
distribution of customers of different banks in a popula-
tion is approximately known. Also there might be prior
knowledge about the area someone lives in. We did not
include such prior knowledge in our experiments. How-
ever, such information could improve both the random
guess as well as the classifier guesses. Prior probabili-
ties could be included to Bayesian classifiers or could be
used for heuristically post-processing classifier output.

For some experiments such as the PINs and the month
of birth, the possible answers are approximately uni-
formly distributed, such that prior knowledge would pro-
vide no information. For other experiments prior knowl-
edge might simply be unavailable and thus can not be
used for more sophisticated models.
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6 Related work

In this section, we overview related papers that use EEG
signals in security-relevant applications.

EEG-based identification and authentication EEG
signal has successfully been used for user identification
(selecting the user identity out of a set of identities) and
user authentication (verifying if a claimed user identity
is true). In [30], the authors provide an overview of
cognitive biometrics, an emerging research area that in-
vestigates how different biosignals can be used for the
purpose of authentication and identification. The au-
thors cover recent papers on biometrics based on EEG,
the electrocardiogram (ECG), and the skin conductance,
also called electrodermal response (EDR). An identifi-
cation mechanism based on the alpha rhythm has been
proposed in [29]. The mechanism uses convex polygon
intersections to map new observations to a user iden-
tity. The authors report a high true positive rate of 95 %
and a true negative rate of 87 % for experiments on 79
users. In method proposed in [23] uses Gaussian mixture
models for user authentication. The authors test their
method with different authentication protocols and report
that with increasing temporal distance from the sign-up
phase, the accuracy degrades. Using a sign-up phase
over several days improves the accuracy. In [36] the
authors describe pass-thoughts, another authentication
mechanism that instead of typing a password requires the
user to think of a password. The idea is very similar to
the conventional P300-Speller scenario we mentioned in
Section 2. A matrix containing characters is shown to a
user and he focuses on the characters required to spell
the password. This way, many shoulder-surfing attacks
could be avoided. The main drawback of this authenti-
cation method (also mentioned by the authors) is a very
low throughput rate of the spelling, which is ≈ 5 char-
acters per minute for the 90% accuracy. Another prob-
lem is that the user gets no feedback until the complete
passphrase is spelled, and hence the whole process must
be repeated if a single character is wrongly classified.

More recently, in [15], the authors introduce a key-
generation technique resistant against coercion attacks.
The idea is to incorporate the user’s emotional status
through skin conductance measurements into the cryp-
tographic key generation. This way, the generated keys
contain a dynamic component that can detect whether a
user is forced to grant an access to the system. Skin con-
ductance is used as an indicator of the person’s overall
arousal state, i.e., the skin conductance of the victim in
a stressful scenario significantly changes compared to a
situation when the keys were generated.

Another highly related work to ours is described in
[37]. The authors exploit an ERP called N400 to detect

if a person is actively thinking about a certain stimuli
without explicitly looking at it. In contrast to the P300
which is related to attention, the N400 has been associ-
ated with semantic processing of words. For example,
in an experiment where subjects are shown incongruent
sentences like “I drink coffee with milk and socks”, the
amplitude of the N400 would be maximal at the last (in-
correct) word. This phenomenon is then used to detect
which out of several possible objects the user is actively
thinking of. While this paper is not focusing on security
issues but rather on assisting a user in efficient search,
the N400 could serve as another attack vector for similar
attacks as those described in this work.

While all listed contributions support our belief that
such devices may be used in everyday tasks, they fol-
low an orthogonal approach by considering how to assist
users in various tasks like, for instance, authentication.
Contrary to that, our objective is to turn the table and
to demonstrate that such technology might create signif-
icant threats to the security and privacy of the users.

Guilty-Knowledge Test The most closely related
work on EEG signals addresses using P300 in lie de-
tection, particularly in the so-called Guilty-Knowledge
Test (GKT) [3]. The operating hypothesis of the GKT is
that familiar items will evoke different responses when
viewed in the context of similar unfamiliar items. It has
been shown that the P300 can be used as a discriminative
feature in detecting whether or not the relevant informa-
tion is stored in the subject’s memory. For this reason,
a GKT based on the P300 has a promising use within
interrogation protocols that enable detection of poten-
tial criminal details held by the suspect, although some
data suggest low detection rates [13]. In contrast, recent
GKT experiments based on the P300 have reported de-
tection accuracies as high as 86% [1]. Of course, as with
the polygraph-based GKT, the P300-GKT is vulnerable
to specific countermeasures, but to a much lesser extent
[33, 34].

Such applications in interrogation protocols have quite
a number of differences from our work. For instance, we
concentrate on consumer-grade devices that have con-
siderably lower signal-to-noise ratios, therefore are more
difficult to analyze. The largest difference between our
approach and in the GTK is the attacker model. While
the GKT-interrogator has full control over the BCI user,
in that he can can attach high-precision electrodes in a
supportive way and force user to collaborate, our attacker
must use the low-cost gaming device selected and at-
tached by the user herself. This makes our attack consid-
erably harder. Moreover, while the GTK victim clearly
knows that she is interrogated and can prepare for that,
in our case the user does not know that she is attacked.
This might increase the validity of revealed information.
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7 Discussion and Future Directions

In this section we discuss possible ways to defend against
the investigated attacks and describe potential future di-
rections.

Conscious Defenses Users of the BCI devices could
actively try to hinder probing by, for instance, concen-
trating on non-target stimuli. To give a concrete exam-
ple, users could count the number of occurrences of an
unfamiliar face in our people experiment. The effec-
tiveness of such defensive techniques has been tested in
the context of guilty knowledge tests, however, there is
no definitive conclusion on whether efforts to conceal
knowledge are effective [35] or ineffective [8]. It is im-
portant to notice that, as we mentioned before, our sce-
nario differs considerably from the GKT scenario. In our
case, we assume that the EEG application has control
of the user input for extended periods of time and that
it conceals the attack in the normal interaction with the
application. It would be difficult to imagine a realistic
scenario in which a concerned user could try to conceal
information from the EEG application for extended peri-
ods of normal usage.

An alternative to limiting the scope of the attacks pre-
sented in this paper is not to expose the raw data from
EEG devices to third-party applications. In this model,
the EEG vendor would create a restricted API that could
only access certain features of the EEG signal. For ex-
ample, applications could be restricted to accessing only
movement related information (reflected in the spectral
power). On the other hand, this poses higher perfor-
mance demands on the device and limits the potential of
developing third-party software.

Another possible way to deal with leaking informa-
tion through the P300 signal would be adding noise to
the EEG raw data before making it available to the appli-
cations that must use it. However, it would be difficult to
strike a balance between the security of such an approach
and the drawbacks in terms of decrease in accuracy of le-
gitimate applications.

Future Directions The overall success of these attacks
highly depends on the user’s attention to the stimuli.
Hence, there are still many open questions concerning
the trade-off between obtrusiveness (in order to increase
the user’s attention during the classification task) and
concealment to avoid the discovery of the attacker’s true
intentions. As part of our future work we intend to ex-
plore this trade-off in more detail. Specifically, by ask-
ing what is the impact of an uncooperative user who at-
tempts to “lie” during the attack, e.g., similar to guilty-
knowledge test settings? How can these attacks be made
more stealthy, i.e., to what extent can they be integrated

into some benign everyday tasks, games, or videos? How
effective is the social engineering approach? For exam-
ple, by offering fake monetary awards or by simply con-
fusing the user (such as asking him to verify whether his
PIN is truly random and telling him to count the number
of the PIN occurrences).

8 Conclusion

The broad field of possible applications and the techno-
logical progress of EEG-based BCI devices indicate that
their pervasiveness in our everyday lives will increase.
In this paper, we focus on the possibility of turning this
technology against the privacy of its users. We believe
that this is an important first step in understanding the
security and privacy implications of this technology.

In this paper, we designed and carried out a number of
experiments which show the feasibility of using a cheap
consumer-level BCI gaming device to partially reveal
private and secret information of the users. In these ex-
periments, a user takes part in classification tasks made
of different images (i.e., stimuli). By analyzing the cap-
tured EEG signal, we were able to detect which of the
presented stimuli are related to the user’s private or se-
cret information, like information related to credit cards,
PIN numbers, the persons known to the user, or the user’s
area of residence, etc. The experiments demonstrate that
the information leakage from the user, measured by the
information entropy is 10 %-20 % of the overall informa-
tion, which can increase up to ≈ 43 %.

The simplicity of our experiments suggests the pos-
sibility of more sophisticated attacks. For example, an
uninformed user could be easily engaged into “mind-
games” that camouflage the interrogation of the user and
make them more cooperative. Furthermore, with the ever
increasing quality of devices, success rates of attacks will
likely improve. Another crucial issue is that current APIs
available to third-party developers offer full access to the
raw EEG signal. This cannot be easily avoided, since the
complex EEG signal processing is outsourced to the ap-
plication. Consequently, the development of new attacks
can be achieved with relative ease and is only limited by
the attacker’s own creativity.
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A Session Script

Preparation. “We will now run a series of experi-
ments. Each one of them takes approximately 1.30 min-
utes. Please find a comfortable position. Please try to
stay still and not move your face.” (Participants are
shown EEG feed and show the effects if the participants
move their body and face)
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Training. “We will now run through a basic experi-
ment to train our software. The system will display a ran-
dom sequence of digits zero through nine. Please count
the number of times [x] is shown. Please do not count the
occurrences of a different number or otherwise attempt to
fool the system.”

Password. “Please choose and write down a 4 digit
PIN and keep it by yourself. Do not show it to me and
do not use a PIN code that you normally use.”

“There are no special instructions for this experiment.
However, at the end of this experiment, you will have to
enter the first digit of the PIN you just chose.”

Banks ATM. “Are you a customer of any of those ten
banks on the list?”
“Are you a customer with just one?”
(If yes to both) “For this experiment, instructions are dis-
played on-screen”

Message on screen: What is the name of your bank?

Banks Debit Cards. “For this experiment, instructions
are displayed on-screen”
Message on screen: What is the name of your bank?

Geographic Location. “Do you live close to campus?”
If yes: “Instructions are displayed on-screen.”
Message on screen: Where do you live? Count the num-
ber of occurrences.

Month of Birth. “Instructions are displayed on-
screen”
Message on screen: When were you born?

People “For this experiment, instructions are displayed
on-screen”
Message on screen: Do you know any of these people?
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