Denoising of continuous-wave
time-of-flight depth images using
confidence measures

Mario Frank

Department of Computer Science, ETH Zurich

Haldeneggsteig 4, 8092 Zurich, Switzerland

Phone: +41 44 632 3179, Fax: +41 44 632 15 62, mario.frankfathz.ch

Matthias Plaue

Department of Mathematics, Technische Universitat Berli

Stral3e des 17. Juni 136, 10623 Berlin, Germany

Phone: +49 30 314 232 65, Fax: +49 30 314 792 82, plaue[at]tudtlrlin.de

Fred A. Hamprecht'

Heidelberg Collaboratory for Image Processing, UnivgmsitHeidelberg

Speyerer Stral3e 4, 69115 Heidelberg, Germany

Phone: +49 6221 54 88 75, Fax: +49 6221 54 52 76, fred.hamipagiolr.uni-heidelberg.de
fcorresponding

Abstract

Time-of-flight range sensors with on-chip continuous-waweerelation of

radio frequency modulated signals are increasingly paopuldey simul-

taneously deliver depth maps and intensity images withenaigl system-
atic errors that are unique for this particular kind of da®ased on recent
theoretical findings on the dominating noise processes wgoge specific
variants of normalized convolution and median filteringthbadaptive and
non-adaptive, to the denoising of the range images. We @ethe pro-

posed filters on real-world depth maps with varying reflagtivstructure,

over-exposure, and illumination. The best results areimdtaby adaptive
filters that locally adjust the level of smoothing using tisérmated modula-
tion amplitude as a measure of confidence.
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1 Introduction

Time-of-flight (TOF) 3D cameras using radio frequency (RF)dulated light
sources an be applied to a whole array of problems, rangorg bbject track-
ing [1, 2], object detection and recognition [3, 4], traffts, [6] to robotics and
automated production [7].

Since all available prototypes as well as future deviceseletange informa-
tion that is subject to noise and systematic errors, for mpptications, denois-
ing/smoothing of the range images is necessary to prodliableedata for further
processing. Systematic errors can be tackled by calilorg®09] or by avoiding
the responsible mechanisms, for example by suppressirdidfadllumination
[10]. In this article we investigate methods for the denmsbf TOF depth maps
which are specially tailored to this particular kind of dafdl assessed methods
make use of recent theoretical findings [11] for these sansor

The range data of the investigated 3D cameras is acquiredlas$. Infrared
light, modulated with radio frequency, is emitted by an LEEag and reflected by
objects at distancé in the scene observed by the camera. After the time of flight
tg = %d the reflected light is detected on the chip by a set gfates per pixel.
These gates correlate the signal shortly after charge gemerwith a reference
signal of the same frequency but phase-shifted wijth= %T" n=0...N—1.
The results of these hardware based autocorrelation ansi{ACF) give one
intensity/,, for eacha,, and for each pixel. From these intensities, the modulation
amplitudeA of the optical signal and the phase delaycorresponding ta, is
computed with

Ine—27ri%

N-1
, da=arg (ane—zm'%> : (1)
n=0

Finally, the depthi is obtained from the phase delay By= ;> ¢4. Technical
details of the 3D imaging system, the RF-modulated TOF r’rmémmﬂ the phase-
shifting technique are discussed extensively in [12, 13he Tnderlying phase
estimation problem is analyzed in [14, 15, 11] and the mogbirtant results are
summarized above without derivation. The resulting depihas are biased and
can be subject to strong noise due to various effects. Oaiglstforward approach
that is frequently used in the context of TOF correlatioredtdrs is to simply dis-
card all depth measurements whose signal amplitude liesvieelcertain thresh-
old. However, the information of these measurements isdostpletely and the
resulting depth image may contain holes that make furthmrgssing difficult.
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Much previous work has focused on the denoising of 2D scalages. An-
isotropic diffusion [16, 17], wavelet denoising [18] (inrtiaular wavelet shrink-
age [19, 20]), non-local means [21, 22], total variation|[28iener filter [24, 25]
or adaptive linear and non-linear filters [26] are well-bitled smoothing tech-
niques, to only name the most prominent ones. There existgolnalbeit com-
putationally costly) smoothing procedures especiallygtesd for surfaces or in-
spired by surface theory that use various geometric flovestikan curvature flow
[27, 28], Beltrami flow [29] or Willmore flow [30]. These meass optimize cer-
tain functionals, and many other variational frameworks dorface smoothing
and reconstruction have been proposed (cf. [31], also fegraechniques). In
[32], such a variational method is used to reconstruct n@ege data by combi-
nation with gray-level data — a problem very similar to the @escribed in this
paper. However, we cannot expect the proposed shape-tiadirgy algorithm to
function with TOF images of real-world objects with varyilgjreflectivity.

As was noted in [33], the restoration error of various deingisnethods can
be quite similar where other criteria such as aesthetiengdtay a fundamental
role in real-world applications. Furthermore, in such agilons non-parametric
methods are desired to minimize the need for user intergctiod limited com-
putational resources must also be considered.

In this contribution, we focus on a limited class of low-cdexity methods
that allow one to explicitly take the uncertainty of the maasnent in each in-
dividual pixel into account. Any such adaptive image deimgisalgorithm has
to consider the respective noise model (see for examplg.[3rtunately, the
measurement errors and accuracy of TOF systems have bekedséxtensively
[35, 36, 11], and as an important result, the standard dewiaff the range data
was found to be reciprocal to the IR modulation signal aragkt[11]. Thus,
an adaptive filter can be employed with the modulation amgéitas confidence
value. In particular, we chose the normalized convolutisthe basic technique,
the optimality of which (in the mean-square sense) was prav§d7].

Our goal is to suggest and evaluate filtering methods thataélceed to this
particular kind of data. To this end, we compare simple apghes that all have
the common aim to make depth images more reliable while pregpas much
depth information as possible. The principal idea of ourtodtis to smooth each
pixel to an extent that is determined by an estimation ofet&bility. In this
way, the values of reliable pixels are preserved more faithfvhile pixels with
a suspected high variance are rigorously corrected.

Section 2 gives a short introduction to the estimation ofréiability of the
range values and introduces our denoising methods anduhéarlying theory.
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In section 3, their performance on various scenes is evaduand extensively
discussed. Our experimental findings are summarized inosedt Finally, we
conclude in section 5.

2 Confidence Estimation and Denoising Strategies

In [11], we have shown that the probability distribution betphase follows a
special instance of the Offset Normal distribution

Gc (¢d7 A/0>

_ % exp [;;422} {H\/g ? cos (¢a) expﬁ%zwd)} (1+erf {Ac%fd)])} @)

with the same quantities as defined in section 1. Here the standard devia-
tion of the raw intensitieg, which are acquired directly on the chip. The spread of
this particular instance of the Offset Normal distributier;,. Hence, for a fixed
standard deviation of the sensitivity of the gates to a physical light signais th
theoretical result establishes a relation between thewegi2 of the estimated
range and the physical amplitudeof the modulation signals? o %. There-
fore, the amplitude is an optimal estimator for the relidpibf a measurement.
Moreover, since the modulation amplitude is calculated@lwith the distance at
very little extra effort this estimator also comes at low qutational cost.

Based on this result we study a set of non-parametric smaptiechniques
that use the modulation amplitude of the signal to deterrtonghat extent each
image region should be smoothed in order to obtain a paatictdnfidence of
the result. The selection is restricted to non-iterativa-parametric approaches
and can be divided into median-based filters and those usingalized convo-
lution. In the following, all used filters are described. Btgon 3 we report the
performance of these methods measured by comparativesassas

2.1 Normalized Convolution using Confidence Values

The simplest way to incorporate a measure of confidence teri@othing of
range maps is to weight each pixel with its confidence esérdating the aver-
aging process: depth values that are more reliable coteribore to the average
depth while unreliable pixels have lower impact. Moreoveg, want to take the
spatial relationship of the pixels into account. Therefameaddition to our con-
fidence measure, we also use a Gaussian kernel as weighttog fas reasoned
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above, the variance of the depth information is proporfitm#he inverse square
of the amplitude. Thus, the amplitude is a well-suited measficonfidence. In
many cases, other errors such as quantization noise anatsateffects due to
overexposure also reveal themselves by a vanishing maolulanplitudé [11].

The pixel(s, j) of the smoothed depth imagk,; ; is computed from the raw
depth map/ with

E ki=—n51 1 E ——nl 1 7«+ki gtk fl? kj 'A?+ki7j+k:j
dh;i,j = n—1 (3)
Zk __n 1 E 2_ " 1 fk K z—i—ki,j-‘rkj

Wheref,g_,kj are the coefficients of the smoothing mask with bandwidtlndn
is an odd mask size. In our experiments, a Gaussian kernefiwéd bandwidth
(standard deviation) of one third of the mask size&as used as fiItef,f}hkj. The
net effect of eq. 3 is to give more importance to those pixetsithich a more
reliable depth estimate is available. In all figures, thiteffiis abbreviated as
Weighted Gaussian (WG).

2.2 Complex Normalized Convolution

The most natural way to represent the raw data acquired eth-phase-shifting
technique is a vector-valued 2D image containing the medsimtensity differ-
ences(ly — I, I3 — I;). Regarded as a complex-valued image, the actual range
image is proportional to the argument, and the amplitdde the magnitude. It

is a reasonable approach to work on this original directidaga rather than the
range image computed from it:

Pnij = arg Z Z exp 'quz-i-klj-i—k ) fi?i,kj ‘A§+ki,j+kj (4)

k’ __7L 1 k,J__

Fort = 1, the above formula describes a Gaussian filter applied to paicwise
difference of the raw intensities and subsequent comutati the phase/range.
We have also computed this directional averagetfer 2 in order to stronger
penalize those values with high variance. The latter metinagvs similar results
compared to the filter introduced in the previous subsedtiadjacent pixels do
not differ more thanr in phase. In all figures, this filter will be denoted depending
on the exponent of the weighting factor either as “complex” or?-complex”.

tUnfortunately, the observed amplitude can still be highatdnset of overexposure.
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2.3 Adaptive Normalized Convolution

The methods described so far can be extended to filters tbatyadapt to the
data quality. A real scene typically consists of regionsvitnich the depth can
be estimated with different reliabilities. An ideal filtdrauld smooth each region
only to the extent that is truly required by a specific regiombtain an estimate
with variance smaller than some user-selected thresholthig end, each pixel is
first weighted with its inverse variance (witt?), and the image is then convolved
with several Gaussian kernels of different widtlas shown in eq. (3). Assuming
spatially uncorrelated noise, the estimated variance afi@shed pixel is now a
function of the bandwidth [38]:

n—1 n—1 2
h
2 k’f:—% Zk;:_i”gl (fk“k’J ' Al—i-k“]—}-k])
Thiig = (5)

n—2

o 2t h 2 2
2 2 . . .

For each pixel, we choose the depth value computed from ¢qvi{8se corre-
sponding new variance — estimated with eq. (5) — is the higlagance below a
user-defined threshold, ., .

This method causes every pixel to be averaged over only ag neghbors as
are strictly required to obtain sufficient “confidence”. liig criterion is reached
with the smallest width for a particular pixel, it will not lsnoothed at all, if the
criterion is not reached even with the largest mask, themdelt obtained with
maximal width is taken. A maximal width up to one third of thesk size is
allowed in order to prevent discontinuity at the tails of Gaussian. The number
of convolutions with different Gaussiarfé determines how densely scale space
is sampled. This is a crucial parameter regarding compuraticosts. Below we
refer to this spatially adaptive filter as the “Adaptive Waigd Gaussian” (AWG)
filter.

2.4 Median and Adaptive Median

In addition to the filters using variants of normalized cdotion, the classical
median was used as well. In order to be able to locally adabietamage quality,
we also implemented the Hampel Detector [39]. It is an adapton-linear filter
that, in analogy to the standard deviation, computes theaspaedian absolute
deviation (MAD) from a median imagé,eq, in ann x n neighborhood

(6)
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Using this robust measure of the outlyingness for each pikel filter smooths
with a spatial median only those pixels with a MAD value lyialgove a user-
defined threshold. This can be regarded as another way @fiatidor a certain
surface roughness in the picture. However, this filter cadistinguish a rough
surface from an even but noisy surface since it uses no neaswonfidence
other than the depth data itself. In order to overcome thigdition, the Hampel
detector can be modified to better suit the features of thigcpkar data type at
hand: instead of the MAD value, the modulation amplituddlean be used as a
threshold. In section 3 we report on the assessment of ak thiters for several
threshold parametersi(or MAD) and mask sizes.

3 Data and Experiments

In this section, we assess the proposed methods on real-dath. In order to
account for the influence of different conditions, all expemts were done on a
set of complex indoor scenes. In addition to the quantieaivalysis, the figures
shown in this section (Fig. 2 and Fig. 3) allow for qualitatiudgment by visual
inspection. As follows, we describe the experimental sgtind the evaluation
methods. Then, we report on our results and discuss thevaakeffects in detail.

3.1 Real-World Data

We used various static scenes such that the quality of thétsas expected to
depend on the features of the image itself. All scenes wegaigd with the

PMD|vision] 19k camera from PMDtec in closed rooms, and nebshem under

the exclusion of daylight. One scene shows a flat surfaceowitmuch structure
(a locker) at close distance, another one is composed of amaxcarpet of low
reflectivity with distant background. In order to observe timpact of the filters
on a fine depth structure, an entangled hose was filmed as kigll L right).

Here the background is a mixture of distant objects and viessepillars. There
is much fine structure in this depth map like cables and neigdbtwists of the
hose, and also sharp and deep edges. Other scenes were avltbardmerous
items and finally a whole room (Fig. 1 left) with a selectionbifiger objects
placed over the whole unambiguous range of 7.5m, such thatilation reaches
from overexposure to insufficient illumination (both dederg on the integration
time). The latter scene also has a region where daylighflescted on a surface
close to an open window. Various integration times were w@exlery scene in



Figure 1: Pictures of two of the scenes used for filter assessnDepth maps
and amplitude images together with filter results and aoidkti information can
be seenin Fig. 2 and Fig. 3. The color pictures shown here miagxactly match
the depth images.

order to study the filters impact on overexposed regions aitdide illuminated
areas as well as on low amplitude regions. The results showh figures refer
to the two scenes shown in Fig. 1.

3.2 Evaluation Methods
3.2.1 Reference Depth Map

We want to investigate the performance of a particular fitbteran image with
given features, ideally with respect to a ground truth. Weehabtained this ref-
erence depth map by taking the mean over a large number oé$rfnom a static
scene. Initially, the median across frames was used bechissmethod is ex-
pected to be more robust. For reasons explained in secdahid.method turned
out to be inappropriate for this particular kind of data.

3.2.2 Extended Comparison

The comparison methods used here were introduced in [40heAdimensional
measure of how well a filter performs is to take the mean absaleviation from
the reference depth map. For added insight, the perfornarcbe regarded as a
function of the uncertainty at a pixel, i.e. the difficultyobtaining a good ground
truth estimate of that pixel. This uncertainty grows witle $pread of all depth



values observed at a given pixel over various frames. Inrastito [40] where
the MAD of the depth across frames was used as an uncertagggure, we have
decided to use the inverse amplitude of the modulation sgjneae it is propor-
tional to the standard deviation of the estimated distandecan be obtained as a
byproduct from the camera for each pixel.

The distribution of the deviations of any image from the gradtruth can now
be summarized in a two-dimensional histogram (Fig. 6) magphe inverse am-
plitude (the “uncertainty”) in one direction and the abseldeviation from the
reference depth map in the other direction. This allows sess the “easy” and
“difficult” regions performance separately, and providgeimation on how seri-
ous the errors are in a particular type of region. Two filtsuits can be compared
directly by subtracting their histograms from each oth@raly, accumulating all
absolute deviations at a given inverse amplitude allow®u®impare more than
two filters at once (see, for instance, Fig. 5).
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Figure 2: Results for a static scene with regions of sufficeemd insufficient il-
lumination. On the top row the amplitude image and the unéttedepth image
are shown. Then come the reference depth map and the filtdtsrésr a 7x7
filter mask. In the bottom row the Gaussian width that was deethe Adap-
tive Weighted Gaussian filter and the standard deviationalV&ames is shown.

Color scales of the depth images are in [m].
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Figure 3: Results for a static scene with regionally poamilination. The order
of the images is the same as in Fig. 2. Again, color scaleseotiéipth images
are in [m]. Bottom left: Note that there are whole regionfidd with maximum
width (red) as well as sufficiently illuminated regions noteothed at all (blue).
The thin dangling cable is bloated by the non-adaptive We@rfiitegion marked

"E”), and falsely eliminated by the MAD filter ("D”).
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4 Results and Analysis

For the two scenes described above, the filter results asdraited in Fig. 2 and
Fig. 3. Both results were obtained by running the filters vaitharametrization
that was optimal in terms of the average error per pixel (¢ppjhe particular
scene. In both figures, the top left image shows the ampktofla single frame.
Similar to a spotlight, the illumination fades radially fnothe center since the
light source can be approximated as a point (for larger négts). The objects
have highly varying reflectivities (note the chair cushioarked by “A") which
makes computing the correct depth very challenging. Comg@énis with a single
depth frame of the original scene (top right), one can dyeabserve a relation
between the amplitude and the confidence. In this contesd,radte the standard
deviation across repeated measurements of the scenenfloagtat). The bottom
left picture shows the width of the Gaussian that was uset thi¢ Adaptive
Weighted Gaussian (AWG) filter. Note that there are wholéoregfiltered with
the maximum width of one third of the full mask size (red) adlas sufficiently
illuminated regions not smoothed at all (blue).

The reference depth map is shown on the left side of the semandit was
constructed by taking the mean over 300 repeated measuremiethe static
scene. Adjacent to this are the results of three filters. Tteamne of the AWG
and the complex WG filter can be best compared by using themsgnarked
with B and C together with the bottom left picture. AWG and WiBegexactly
the same result for pixels smoothed with maximal width (raxdl differ more
and more as the AWG filter uses smaller widths. The adaptivdandilter using
MAD as the threshold performs well in preserving the edge<loinates small
structures (compare markers D and E in Fig. 3). Moreovegaiés surprisingly
numerous outliers that intuitively should have been rerddgee Fig. 3 D). We
will refer to this effect later.

4.1 The Effect of Directed Blurring/Dilation

All filters using the amplitude as a measure of confidence tawepe with ar-
tifacts that appear as directed blurring at the edges. Tioislgm is due to the
fact that the amplitude is itself a function of distance: &b further away have a
much lower amplitude than objects close to the camera. &lyadidjacent pixels
may show objects of different distance, and as a result, fedrdint amplitudes.
When convolving withA!;¢ > 0 as a weighing factor, the pixels with smaller
depth value and larger amplitude will always have a muchédngmpact on the
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result: closer objects grow at their edges and occlude tlahwdluminated ob-
jects in the background. The impact of the effect grows wind the mask size.
This can be seen in Fig. 3 where the cable (marker E) and tloevpare much
broader after filtering. Thus, in the context of the desatib#ect, the selection
of ¢ is a crucial choice. In assessing the complex filters intcedun section 2.2
we observed that weighting with? performs better than using. This is due to
the fact that the former method penalizes values exactlyrdony to the variance.
However, with mask sizes dfl x 11 or higher (and therefore also with higher
maximal Gaussian width, which is restricted to one thirdhe thask size) the
boosted effect of “directed blurring” produces errors thatbalance the benefit
of this penalization. This effect can dominate the mean labs@rror per pixel
(epp) obtained from comparing the resulting image with anexice depth map as
described in section 3.2.1.

The choice of the variance threshold for AWG and the maxirhahed Gaus-
sian width have a large impact. One could argue that the AW& Bhould allow
for a higher maximal width in order to decrease the often \regh fraction of
pixels convolved with that width. However, one has to coesitiat scenes with
deep depth edges would be strongly distorted, then. Singestect the maximal
Gaussian width to one third of the mask sizeve can observe this effect by com-
paring filters with different mask sizes. Fig. 4 shows therage error per pixel
(epp) against the AWG variance threshold for various mas#ssiWith increasing
variance threshold, the fraction of pixels smoothed witkximal Gaussian width
decreases to a small number of pixels having exactly zerdituug. These pix-
els are responsible for the constant differences at the tags between curves
for different mask size: (top left in Fig. 4) because in this regime the AWG filter
always smooths with maximal allowed width, which increasé$ n. At very
small variance threshold, almost every pixel is smoothed miaximal width and
thus the error of larger masks rises very fast with vanistingshold.

4.2 Runtime

Depending on the application, the computation time may beraimportant fac-

tor for the choice of a particular filter. The fixed width filseare the fastest, with
the complex one being a bit slower due to the conversion frepthdvalues to
the complex plane. Apart from the mask size, their runtimedgpendent of any
parameters and of the image quality. The same holds for tlidamdilter. The

AWG filter does not depend on the image quality either (if iempénted noniter-
atively) but depends strongly on the number of performed/aloions between
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minimal and maximal Gaussian width in the scale selectiatgss. There is a
tradeoff between speed and ensuring that every pixel isddtevith its appropri-
ate Gaussian kernel. Experience shows that it suffices tplsaime scale space
at only a few Gaussian widths to achieve satisfactory restlhe reason is that
the amplitude varies a lot such that most pixels are eithterdid with minimal or
maximal width and only a few need to be filtered with interna¢elikernel sizes.

Adaptive Weighted Gaussian: Mean Absolute Error Per Pixel (epp) vs. Variance Threshold ~ Adaptive Median(A): Mean Absolute Error Per Pixel (epp) vs. Inverse Amplitude Threshold
0.25 T 02 T T T T

; -9-3x3

019t -8-56 4 0.19F
== 7X7
0.1 W2 WA ‘:' 1;(1:15 Lt 0.1 B e A A A A A A 9 R |
- X'
1axta eoeomy
~ % epp of unfiltered depth map 1 0171 1
8 el
&
© 0.15
0145 e
g -8-5x5
04 -t 7T
i 2= 11x11
+-13x13
0.12¢ 19x19
¥ epp of unfiltered depth map
0.11 . . 011 .
0 0.02 0.04 0.06 0.08 01 0 05 1 15 2
variance threshold[m] 1/ (amplitude threshold)

Adaptive Weighted Gaussian: Mean Absolute Error Per Pixel (epp) vs. Variance Threshold  Adaptive Median(A): Mean Absolute Error Per Pixel (epp) vs. Inverse Amplitude Threshold
T T T T T

:
-6-3a
-8-56
707
T TS A et e R R )
- 13413 !
19x19
0.25¢ * epp of unfiltered depth map 0.25
E E
= =
= g
o o
02 02
&
e
0.15%&“;““5455¢ RARZRTS 1 - ‘ epp of unfillered depth map
0 002 0.04 0.06 008 0.4 ) 05 2

. 1 1.
variance threshold[m] 1/ (amplitude threshold)

Figure 4. The mean absolute Error Per Pixel (epp) as a funcfithe threshold
for the AWG and the Adaptive Median filter (weighted by ampdié A). The
graphs within a row can be directly compared since they haeesame scale for
epp. The results of the first row were obtained by smoothingpanrscene with
mixed illumination and big objects (see Fig. 2). The secavdshows the results
from a highly structured scene (see Fig. 3). The steps initjit graphs result
from the fact that higher values chorrespond to small changes of the threshold
A. Since the amplitude in the images is quantized, a smallggnahthe threshold
has no impact on the filter behavior over somewhat Iarge\jalxeof%.
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Error distribution of sequence filtered by various filters Error distribution of sequence filtered by various filters
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Figure 5: The absolute deviation from the reference depghweesus the expected
standard deviatio@. Top row: results from the scene showing a room (Fig. 2).
Left: The adaptive filters lead to similar results. In thes®trow are results from
the scene showing a hose (Fig. 3). Right: The WG graph ancbthplex? graph
are equal. For high amplitudes the filters with fixed widthdléa errors higher
than the original image. The composition of the error caneyaed in more

detail by employing Fig. 6.

Both the adaptive median filter using the spatial MAD valuender to decide
if to filter or not, and the one using the amplitude, dependrenimage quality
itself (if implemented such that the unnecessary comprtatfor “good” pixels
are avoided). “Difficult” images are filtered more intensyvand therefore need
more time. The amplitude-controlled median is always fasitgce its variance
measure is available for free in terms of computationalcosdl computations
were performed with MATLAB on an Athlon 64 2.2 GHz processathwe GB
memory. The most illustrative results are summarized in Tand Tab. 2.
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Error distribution of an unfiltered depth map nD\fference of error distributions: AWG - adaptive median
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Figure 6: Top left: error histogram of the original hose s@rig. 3) with log-
arithmic frequencies (color scale). At very high amplite@dl errors are small
whereas with decreasing amplitude the errors become vghy fAihe other plots
show subtracted pairwise filtering histograms. Note thatrémges of the differ-
ence histograms are smaller. Counts outside the displayesiaae summarized
in the highest bins respectively. G: The adaptive medianglwed by amplitude
A) reduced the error of well illuminated pixels more than AVB@ was worse at
very bad pixels (H). Smoothing with maximal width improvés tquality of flat
surfaces () but can lead to high errors at the edges duedotdd blurring (J).

4.3 Comparison of the filters using Normalized Convolution

The filters with fixed width were the fastest and produced \&@myilar results.
All investigations have shown that the weighted Gaussi&er ffWG) with fixed
width leads to the same result as directional averagingdrctimplex plane with
A?. Both filters use the same technique (normalized convaeljttimd the same
weighting factors. A difference only occurs if many adjacpixels differ by
more thanr in phase. In most cases, the complex filter usings a weighting
factor performed worse than the WG and the AWG filter. Onlyhviitask sizes of
11 x 11 or higher did the weaker penalization of a low amplitude pihgioce the
effect of directed blurring was not that strong. This filterresponds to weighting
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Table 1: Computation time in [s] for an image with 160 by 12%eté of medium

guality (the room scene) and a large number of convolutietepg) for AWG in

the scale selection process. The time is averaged over b8Gand the empirical
standard deviation is given.

n | AWGsteps AWG | AdMed (MAD) | AdMed (A) WG ComplexA?
3 45 1.270.03| 2.60+:0.04 0.98+0.02 | 0.0054+0.0001| 0.023+0.001
5 78 3.18t0.09| 2.64+0.04 1.00+0.02 | 0.0066-+0.0003| 0.042+0.001
7 112 6.0t0.5 2.70+0.07 1.02+0.02 | 0.0073+0.0006| 0.072+0.007
Table 2: Computation time in [s] for an image with 160 by 12¢0gts of poor qual-
ity (the box, see Fig. 8) and a small number of convolutiotsp®) for AWG in
the scale selection process. The time is averaged over b8Gand the empirical
standard deviation is given.
n| AWGsteps AWG | AdMed(MAD) | AdMed(A) WG Complex-A2
3 9 0.16£0.01| 2.61+0.03 | 0.99+0.01 | 0.005+0.001 | 0.024+0.001
5 16 0.32:0.01| 2.6740.03 | 1.00+0.02 | 0.00A40.001| 0.044+-0.001
7 22 0.53t0.01| 2.70+0.04 | 1.03£0.02 | 0.0070.001| 0.0714-0.001

directly on the raw data which implicitly makes use of the éitudes and takes
place in the complex plane as well.
In slightly overexposed regions where the modulation atugé is still high,
all fixed width filters performed better than the AWG since tager does not
smooth at all at these amplitudes. Adjacent to slightly exposed pixels, there
are either pixels without overexposure but sufficient ilination (and higher am-
plitude) or others with even more saturation effects (amcetoamplitude [11]).
In these cases, non-adaptive amplitude-weighted filtaalngys produces more
reliable information (see Fig. 7, F). If the overexposedorg are too large, only
the edges to non-saturated regions benefit from filtering.
Considering the effect of directed blurring, the adaptppraach is superior to
the non-adaptive. This is clearly illustrated at the dargtable in Fig. 3 (marker
E). Overall, adaptivity pays off in all observed scenes:gpp is always somewhat
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lower as one can see in Fig. 4 left (WG corresponds to a vaitdmeshold of 0)

ce

One frame of adaptive median (A) filtered sequence

One frame of gaussian filtered sequence

o 20 40 60 80 100 120 140 160

Figure 7: Four depth images of the hose scene acquired with2htegration
time. The region marked with F has a strong bias due to ovesexp. Only the
weighted Gaussian filters with fixed width were able to cdrtleis bias.

4.4 Comparison of the Median Filters

In the first brief discussion of Fig. 3 we mentioned that thepdte median using
MAD left a surprisingly large number of outliers in the imag&his occurs in
regions with high standard deviation and low amplitude. fd#eson is that at van-
ishing amplitude the depth values within the unambiguongeare only sparsely
populated due to strong quantization errors [11]. Takirgrttedian of such a set
of pixels always leads to the same value which in turn leadsvanishing MAD
value (see Fig. 8). These pixels are not smoothed by theigdapéedian except
if the detector's MAD threshold is set to zero (that is to sakirig the median
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nonadaptively). Therefore the simple median or the adeptigdian usingl as a
threshold performed better in the case of very low amplifigels.

All median filters completely removed fine structures in teptth images such
as the cable in Fig. 3 (marker E). In return, outliers are negddy the median and
the adaptive median using the amplitude, too. At accepti#lbiypinated regions
or when adapting with respect to the amplitudiethe results are comparable to
the AWG filter and better than that of the WG's. In the case of Varge mask
sizes, the median filters performed best since they causeewiet blurring.

Spatial MAD value for each pixel

Pixels with MAD = 0 (black)
T & -

E_ -

Figure 8: Regions with low amplitude are subject to strongmjization effects
such that only few different depth values are possible. Tdasls to frequently
occurring values and in consequence to a low MAD value evéreifvariance is
high. The original scene shows an open box and backgrounitt. Tiee spatial
MAD value is zero for many pixels with low signal amplitudencé the pixels
populate only a few particular depth values there.

5 Conclusion and Outlook

We discussed various approaches to the denoising of depit odained by TOF
3D cameras. Two main concepts and their variations haveibeestigated: nor-
malized convolution with different weighting factors anedman filtering, both in
adaptive and in nonadaptive variants. An assessment haspee®rmed using
gualitative and quantitative methods. It has turned out tiwa inverse squared
amplitude is indeed a reliable measure of confidence, asgeedy theory. The
WG filters with fixed width and weighting witt? have performed well in all
scenes if used up to a maximal mask size&’of 7. For larger mask sizes, the
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effect of directed blurring leads to large errors. They & dnly ones to cope
with small patches of overexposure and offer the fastespcoation.

However, the fixed width filters unnecessarily blur the “gbptkels. There,
the error can become larger than the error of the unfilteredyén The adaptive
weighted Gaussian filter (AWG) uses smaller Gaussian widthise edges than
the WG filters and therefore has a reduced error at the edgesadaptive median
using MAD as a threshold has difficulty coping with the quaation effects of
the data. However, if the modulation amplitude is used athiteshold, results are
comparable to that of the AWG filter except for the drawback gmall structures
are completely suppressed and the advantage of better eslggr\ying. Consider-
ing the mean absolute error per pixel (epp) the AWG filter @ath better results
even with suboptimal parametrization (see Fig. 4). Negigatomputation time,
it is superior to all filters investigated.

All proposed filters can be implemented non-iterativelyrtker effort could
be directed towards iterative approaches or bilateraldilt¢2] to overcome the
discussed effect of directed blurring.
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