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Abstract
Time-of-flight range sensors with on-chip continuous-wavecorrelation of
radio frequency modulated signals are increasingly popular. They simul-
taneously deliver depth maps and intensity images with noise and system-
atic errors that are unique for this particular kind of data.Based on recent
theoretical findings on the dominating noise processes we propose specific
variants of normalized convolution and median filtering, both adaptive and
non-adaptive, to the denoising of the range images. We examine the pro-
posed filters on real-world depth maps with varying reflectivity, structure,
over-exposure, and illumination. The best results are obtained by adaptive
filters that locally adjust the level of smoothing using the estimated modula-
tion amplitude as a measure of confidence.
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1 Introduction

Time-of-flight (TOF) 3D cameras using radio frequency (RF) modulated light
sources an be applied to a whole array of problems, ranging from object track-
ing [1, 2], object detection and recognition [3, 4], traffic [5, 6] to robotics and
automated production [7].

Since all available prototypes as well as future devices deliver range informa-
tion that is subject to noise and systematic errors, for mostapplications, denois-
ing/smoothing of the range images is necessary to produce reliable data for further
processing. Systematic errors can be tackled by calibration [8, 9] or by avoiding
the responsible mechanisms, for example by suppressing backlight illumination
[10]. In this article we investigate methods for the denoising of TOF depth maps
which are specially tailored to this particular kind of data. All assessed methods
make use of recent theoretical findings [11] for these sensors.

The range data of the investigated 3D cameras is acquired as follows. Infrared
light, modulated with radio frequency, is emitted by an LED array and reflected by
objects at distanced in the scene observed by the camera. After the time of flight
td = 2d

c
the reflected light is detected on the chip by a set ofn gates per pixel.

These gates correlate the signal shortly after charge generation with a reference
signal of the same frequency but phase-shifted withαn = 2πn

N
, n = 0 . . . N − 1.

The results of these hardware based autocorrelation functions (ACF) give one
intensityIn for eachαn and for each pixel. From these intensities, the modulation
amplitudeA of the optical signal and the phase delayφd corresponding totd is
computed with
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Finally, the depthd is obtained from the phase delay byd = c
4πf

φd. Technical
details of the 3D imaging system, the RF-modulated TOF method and the phase-
shifting technique are discussed extensively in [12, 13]. The underlying phase
estimation problem is analyzed in [14, 15, 11] and the most important results are
summarized above without derivation. The resulting depth values are biased and
can be subject to strong noise due to various effects. One straightforward approach
that is frequently used in the context of TOF correlation detectors is to simply dis-
card all depth measurements whose signal amplitude lies below a certain thresh-
old. However, the information of these measurements is lostcompletely and the
resulting depth image may contain holes that make further processing difficult.
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Much previous work has focused on the denoising of 2D scalar images. An-
isotropic diffusion [16, 17], wavelet denoising [18] (in particular wavelet shrink-
age [19, 20]), non-local means [21, 22], total variation [23], Wiener filter [24, 25]
or adaptive linear and non-linear filters [26] are well-established smoothing tech-
niques, to only name the most prominent ones. There exist powerful (albeit com-
putationally costly) smoothing procedures especially designed for surfaces or in-
spired by surface theory that use various geometric flows like mean curvature flow
[27, 28], Beltrami flow [29] or Willmore flow [30]. These measures optimize cer-
tain functionals, and many other variational frameworks for surface smoothing
and reconstruction have been proposed (cf. [31], also for other techniques). In
[32], such a variational method is used to reconstruct noisyrange data by combi-
nation with gray-level data – a problem very similar to the one described in this
paper. However, we cannot expect the proposed shape-from-shading algorithm to
function with TOF images of real-world objects with varyingIR reflectivity.

As was noted in [33], the restoration error of various denoising methods can
be quite similar where other criteria such as aesthetics often play a fundamental
role in real-world applications. Furthermore, in such applications non-parametric
methods are desired to minimize the need for user interaction, and limited com-
putational resources must also be considered.

In this contribution, we focus on a limited class of low-complexity methods
that allow one to explicitly take the uncertainty of the measurement in each in-
dividual pixel into account. Any such adaptive image denoising algorithm has
to consider the respective noise model (see for example [34]). Fortunately, the
measurement errors and accuracy of TOF systems have been studied extensively
[35, 36, 11], and as an important result, the standard deviation of the range data
was found to be reciprocal to the IR modulation signal amplitude [11]. Thus,
an adaptive filter can be employed with the modulation amplitude as confidence
value. In particular, we chose the normalized convolution as the basic technique,
the optimality of which (in the mean-square sense) was proven in [37].

Our goal is to suggest and evaluate filtering methods that aretailored to this
particular kind of data. To this end, we compare simple approaches that all have
the common aim to make depth images more reliable while preserving as much
depth information as possible. The principal idea of our method is to smooth each
pixel to an extent that is determined by an estimation of its reliability. In this
way, the values of reliable pixels are preserved more faithfully while pixels with
a suspected high variance are rigorously corrected.

Section 2 gives a short introduction to the estimation of thereliability of the
range values and introduces our denoising methods and theirunderlying theory.
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In section 3, their performance on various scenes is evaluated and extensively
discussed. Our experimental findings are summarized in section 4. Finally, we
conclude in section 5.

2 Confidence Estimation and Denoising Strategies

In [11], we have shown that the probability distribution of the phase follows a
special instance of the Offset Normal distribution

Gc (φd; A/σ)
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with the same quantities as defined in section 1. Here,σ is the standard devia-
tion of the raw intensitiesIn which are acquired directly on the chip. The spread of
this particular instance of the Offset Normal distributionis σ

A
. Hence, for a fixed

standard deviationσ of the sensitivity of the gates to a physical light signal, this
theoretical result establishes a relation between the varianceσ2

d of the estimated
range and the physical amplitudeA of the modulation signal:σ2

d ∝ 1

A2 . There-
fore, the amplitude is an optimal estimator for the reliability of a measurement.
Moreover, since the modulation amplitude is calculated along with the distance at
very little extra effort this estimator also comes at low computational cost.

Based on this result we study a set of non-parametric smoothing techniques
that use the modulation amplitude of the signal to determineto what extent each
image region should be smoothed in order to obtain a particular confidence of
the result. The selection is restricted to non-iterative, non-parametric approaches
and can be divided into median-based filters and those using normalized convo-
lution. In the following, all used filters are described. In section 3 we report the
performance of these methods measured by comparative assessment.

2.1 Normalized Convolution using Confidence Values

The simplest way to incorporate a measure of confidence to thesmoothing of
range maps is to weight each pixel with its confidence estimate during the aver-
aging process: depth values that are more reliable contribute more to the average
depth while unreliable pixels have lower impact. Moreover,we want to take the
spatial relationship of the pixels into account. Therefore, in addition to our con-
fidence measure, we also use a Gaussian kernel as weighting factor. As reasoned
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above, the variance of the depth information is proportional to the inverse square
of the amplitude. Thus, the amplitude is a well-suited measure of confidence. In
many cases, other errors such as quantization noise and saturation effects due to
overexposure also reveal themselves by a vanishing modulation amplitude1 [11].

The pixel(i, j) of the smoothed depth imagedh;i,j is computed from the raw
depth mapd with

dh;i,j =

∑

n−1

2

ki=−n−1

2

∑
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2
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2
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wherefh
ki,kj

are the coefficients of the smoothing mask with bandwidthh, andn
is an odd mask size. In our experiments, a Gaussian kernel with fixed bandwidth
(standard deviation) of one third of the mask sizen was used as filterfh

ki,kj
. The

net effect of eq. 3 is to give more importance to those pixels for which a more
reliable depth estimate is available. In all figures, this filter is abbreviated as
Weighted Gaussian (WG).

2.2 Complex Normalized Convolution

The most natural way to represent the raw data acquired with the4-phase-shifting
technique is a vector-valued 2D image containing the measured intensity differ-
ences(I0 − I2, I3 − I1). Regarded as a complex-valued image, the actual range
image is proportional to the argument, and the amplitudeA is the magnitude. It
is a reasonable approach to work on this original directional data rather than the
range image computed from it:

φh;i,j = arg


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

 (4)

For t = 1, the above formula describes a Gaussian filter applied to each pairwise
difference of the raw intensities and subsequent computation of the phase/range.
We have also computed this directional average fort = 2 in order to stronger
penalize those values with high variance. The latter methodshows similar results
compared to the filter introduced in the previous subsectionif adjacent pixels do
not differ more thanπ in phase. In all figures, this filter will be denoted depending
on the exponentt of the weighting factor either as “complex” or “A2-complex”.

1Unfortunately, the observed amplitude can still be high at the onset of overexposure.
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2.3 Adaptive Normalized Convolution

The methods described so far can be extended to filters that locally adapt to the
data quality. A real scene typically consists of regions forwhich the depth can
be estimated with different reliabilities. An ideal filter should smooth each region
only to the extent that is truly required by a specific region to obtain an estimate
with variance smaller than some user-selected threshold. To this end, each pixel is
first weighted with its inverse variance (withA2), and the image is then convolved
with several Gaussian kernels of different widthh as shown in eq. (3). Assuming
spatially uncorrelated noise, the estimated variance of a smoothed pixel is now a
function of the bandwidth [38]:

σ2
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(5)

For each pixel, we choose the depth value computed from eq. (3) whose corre-
sponding new variance – estimated with eq. (5) – is the highest variance below a
user-defined thresholdσ2

thresh.
This method causes every pixel to be averaged over only as many neighbors as

are strictly required to obtain sufficient “confidence”. If this criterion is reached
with the smallest width for a particular pixel, it will not besmoothed at all, if the
criterion is not reached even with the largest mask, then theresult obtained with
maximal width is taken. A maximal width up to one third of the mask size is
allowed in order to prevent discontinuity at the tails of theGaussian. The number
of convolutions with different Gaussiansfh determines how densely scale space
is sampled. This is a crucial parameter regarding computational costs. Below we
refer to this spatially adaptive filter as the “Adaptive Weighted Gaussian” (AWG)
filter.

2.4 Median and Adaptive Median

In addition to the filters using variants of normalized convolution, the classical
median was used as well. In order to be able to locally adapt tothe image quality,
we also implemented the Hampel Detector [39]. It is an adaptive non-linear filter
that, in analogy to the standard deviation, computes the spatial median absolute
deviation (MAD) from a median imagedmedn in ann × n neighborhood

MADn = medn|d − dmedn| (6)
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Using this robust measure of the outlyingness for each pixel, the filter smooths
with a spatial median only those pixels with a MAD value lyingabove a user-
defined threshold. This can be regarded as another way of allowing for a certain
surface roughness in the picture. However, this filter cannot distinguish a rough
surface from an even but noisy surface since it uses no measure of confidence
other than the depth data itself. In order to overcome this limitation, the Hampel
detector can be modified to better suit the features of the particular data type at
hand: instead of the MAD value, the modulation amplitudeA can be used as a
threshold. In section 3 we report on the assessment of all three filters for several
threshold parameters (A or MAD) and mask sizesn.

3 Data and Experiments

In this section, we assess the proposed methods on real-world data. In order to
account for the influence of different conditions, all experiments were done on a
set of complex indoor scenes. In addition to the quantitative analysis, the figures
shown in this section (Fig. 2 and Fig. 3) allow for qualitative judgment by visual
inspection. As follows, we describe the experimental setting and the evaluation
methods. Then, we report on our results and discuss the observed effects in detail.

3.1 Real-World Data

We used various static scenes such that the quality of the results is expected to
depend on the features of the image itself. All scenes were acquired with the
PMD[vision] 19k camera from PMDtec in closed rooms, and mostof them under
the exclusion of daylight. One scene shows a flat surface without much structure
(a locker) at close distance, another one is composed of a boxon a carpet of low
reflectivity with distant background. In order to observe the impact of the filters
on a fine depth structure, an entangled hose was filmed as well (Fig. 1 right).
Here the background is a mixture of distant objects and very close pillars. There
is much fine structure in this depth map like cables and neighbored twists of the
hose, and also sharp and deep edges. Other scenes were a boardwith numerous
items and finally a whole room (Fig. 1 left) with a selection ofbigger objects
placed over the whole unambiguous range of 7.5m, such that illumination reaches
from overexposure to insufficient illumination (both depending on the integration
time). The latter scene also has a region where daylight is reflected on a surface
close to an open window. Various integration times were usedat every scene in
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Figure 1: Pictures of two of the scenes used for filter assessment. Depth maps
and amplitude images together with filter results and additional information can
be seen in Fig. 2 and Fig. 3. The color pictures shown here may not exactly match
the depth images.

order to study the filters impact on overexposed regions and suitable illuminated
areas as well as on low amplitude regions. The results shown in all figures refer
to the two scenes shown in Fig. 1.

3.2 Evaluation Methods

3.2.1 Reference Depth Map

We want to investigate the performance of a particular filteron an image with
given features, ideally with respect to a ground truth. We have obtained this ref-
erence depth map by taking the mean over a large number of frames from a static
scene. Initially, the median across frames was used becausethis method is ex-
pected to be more robust. For reasons explained in section 4.4 this method turned
out to be inappropriate for this particular kind of data.

3.2.2 Extended Comparison

The comparison methods used here were introduced in [40]. A one-dimensional
measure of how well a filter performs is to take the mean absolute deviation from
the reference depth map. For added insight, the performancecan be regarded as a
function of the uncertainty at a pixel, i.e. the difficulty inobtaining a good ground
truth estimate of that pixel. This uncertainty grows with the spread of all depth
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values observed at a given pixel over various frames. In contrast to [40] where
the MAD of the depth across frames was used as an uncertainty measure, we have
decided to use the inverse amplitude of the modulation signal since it is propor-
tional to the standard deviation of the estimated distance and can be obtained as a
byproduct from the camera for each pixel.

The distribution of the deviations of any image from the ground truth can now
be summarized in a two-dimensional histogram (Fig. 6) mapping the inverse am-
plitude (the “uncertainty”) in one direction and the absolute deviation from the
reference depth map in the other direction. This allows to assess the “easy” and
“difficult” regions performance separately, and provides information on how seri-
ous the errors are in a particular type of region. Two filter results can be compared
directly by subtracting their histograms from each other. Finally, accumulating all
absolute deviations at a given inverse amplitude allows us to compare more than
two filters at once (see, for instance, Fig. 5).
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Figure 2: Results for a static scene with regions of sufficient and insufficient il-
lumination. On the top row the amplitude image and the unfiltered depth image
are shown. Then come the reference depth map and the filter results for a 7x7
filter mask. In the bottom row the Gaussian width that was usedfor the Adap-
tive Weighted Gaussian filter and the standard deviation over all frames is shown.
Color scales of the depth images are in [m].
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Figure 3: Results for a static scene with regionally poor illumination. The order
of the images is the same as in Fig. 2. Again, color scales of the depth images
are in [m]. Bottom left: Note that there are whole regions filtered with maximum
width (red) as well as sufficiently illuminated regions not smoothed at all (blue).
The thin dangling cable is bloated by the non-adaptive WG filter (region marked
”E”), and falsely eliminated by the MAD filter (”D”).
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4 Results and Analysis

For the two scenes described above, the filter results are illustrated in Fig. 2 and
Fig. 3. Both results were obtained by running the filters witha parametrization
that was optimal in terms of the average error per pixel (epp)for the particular
scene. In both figures, the top left image shows the amplitudes of a single frame.
Similar to a spotlight, the illumination fades radially from the center since the
light source can be approximated as a point (for larger distances). The objects
have highly varying reflectivities (note the chair cushion marked by “A”) which
makes computing the correct depth very challenging. Comparing this with a single
depth frame of the original scene (top right), one can directly observe a relation
between the amplitude and the confidence. In this context, also note the standard
deviation across repeated measurements of the scene (bottom right). The bottom
left picture shows the width of the Gaussian that was used with the Adaptive
Weighted Gaussian (AWG) filter. Note that there are whole regions filtered with
the maximum width of one third of the full mask size (red) as well as sufficiently
illuminated regions not smoothed at all (blue).

The reference depth map is shown on the left side of the secondrow. It was
constructed by taking the mean over 300 repeated measurements of the static
scene. Adjacent to this are the results of three filters. The outcome of the AWG
and the complex WG filter can be best compared by using the regions marked
with B and C together with the bottom left picture. AWG and WG give exactly
the same result for pixels smoothed with maximal width (red)and differ more
and more as the AWG filter uses smaller widths. The adaptive median filter using
MAD as the threshold performs well in preserving the edges but eliminates small
structures (compare markers D and E in Fig. 3). Moreover, it leaves surprisingly
numerous outliers that intuitively should have been removed (see Fig. 3 D). We
will refer to this effect later.

4.1 The Effect of Directed Blurring/Dilation

All filters using the amplitude as a measure of confidence haveto cope with ar-
tifacts that appear as directed blurring at the edges. This problem is due to the
fact that the amplitude is itself a function of distance: Objects further away have a
much lower amplitude than objects close to the camera. Spatially adjacent pixels
may show objects of different distance, and as a result, of different amplitudes.
When convolving withAt; t > 0 as a weighing factor, the pixels with smaller
depth value and larger amplitude will always have a much higher impact on the
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result: closer objects grow at their edges and occlude the weakly illuminated ob-
jects in the background. The impact of the effect grows witht and the mask size.
This can be seen in Fig. 3 where the cable (marker E) and the pillow are much
broader after filtering. Thus, in the context of the described effect, the selection
of t is a crucial choice. In assessing the complex filters introduced in section 2.2
we observed that weighting withA2 performs better than usingA. This is due to
the fact that the former method penalizes values exactly according to the variance.
However, with mask sizes of11 × 11 or higher (and therefore also with higher
maximal Gaussian width, which is restricted to one third of the mask size) the
boosted effect of “directed blurring” produces errors thatoutbalance the benefit
of this penalization. This effect can dominate the mean absolute error per pixel
(epp) obtained from comparing the resulting image with a reference depth map as
described in section 3.2.1.

The choice of the variance threshold for AWG and the maximal allowed Gaus-
sian width have a large impact. One could argue that the AWG filter should allow
for a higher maximal width in order to decrease the often veryhigh fraction of
pixels convolved with that width. However, one has to consider that scenes with
deep depth edges would be strongly distorted, then. Since werestrict the maximal
Gaussian width to one third of the mask sizen we can observe this effect by com-
paring filters with different mask sizes. Fig. 4 shows the average error per pixel
(epp) against the AWG variance threshold for various mask sizes. With increasing
variance threshold, the fraction of pixels smoothed with maximal Gaussian width
decreases to a small number of pixels having exactly zero amplitude. These pix-
els are responsible for the constant differences at the right tails between curves
for different mask sizen (top left in Fig. 4) because in this regime the AWG filter
always smooths with maximal allowed width, which increaseswith n. At very
small variance threshold, almost every pixel is smoothed with maximal width and
thus the error of larger masks rises very fast with vanishingthreshold.

4.2 Runtime

Depending on the application, the computation time may be a very important fac-
tor for the choice of a particular filter. The fixed width filters are the fastest, with
the complex one being a bit slower due to the conversion from depth values to
the complex plane. Apart from the mask size, their runtime isindependent of any
parameters and of the image quality. The same holds for the median filter. The
AWG filter does not depend on the image quality either (if implemented noniter-
atively) but depends strongly on the number of performed convolutions between
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minimal and maximal Gaussian width in the scale selection process. There is a
tradeoff between speed and ensuring that every pixel is filtered with its appropri-
ate Gaussian kernel. Experience shows that it suffices to sample the scale space
at only a few Gaussian widths to achieve satisfactory results. The reason is that
the amplitude varies a lot such that most pixels are either filtered with minimal or
maximal width and only a few need to be filtered with intermediate kernel sizes.

Figure 4: The mean absolute Error Per Pixel (epp) as a function of the threshold
for the AWG and the Adaptive Median filter (weighted by amplitude A). The
graphs within a row can be directly compared since they have the same scale for
epp. The results of the first row were obtained by smoothing a room scene with
mixed illumination and big objects (see Fig. 2). The second row shows the results
from a highly structured scene (see Fig. 3). The steps in the right graphs result
from the fact that higher values of1

A
correspond to small changes of the threshold

A. Since the amplitude in the images is quantized, a small change of the threshold
has no impact on the filter behavior over somewhat large intervals of 1

A
.
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Figure 5: The absolute deviation from the reference depth map versus the expected
standard deviation (1

A
). Top row: results from the scene showing a room (Fig. 2).

Left: The adaptive filters lead to similar results. In the second row are results from
the scene showing a hose (Fig. 3). Right: The WG graph and thecomplex2 graph
are equal. For high amplitudes the filters with fixed width lead to errors higher
than the original image. The composition of the error can be analyzed in more
detail by employing Fig. 6.

Both the adaptive median filter using the spatial MAD value inorder to decide
if to filter or not, and the one using the amplitude, depend on the image quality
itself (if implemented such that the unnecessary computations for “good” pixels
are avoided). “Difficult” images are filtered more intensively and therefore need
more time. The amplitude-controlled median is always faster since its variance
measure is available for free in terms of computational costs. All computations
were performed with MATLAB on an Athlon 64 2.2 GHz processor with 2 GB
memory. The most illustrative results are summarized in Tab. 1 and Tab. 2.
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Figure 6: Top left: error histogram of the original hose scene (Fig. 3) with log-
arithmic frequencies (color scale). At very high amplitudes all errors are small
whereas with decreasing amplitude the errors become very high. The other plots
show subtracted pairwise filtering histograms. Note that the ranges of the differ-
ence histograms are smaller. Counts outside the displayed axes are summarized
in the highest bins respectively. G: The adaptive median (weighted by amplitude
A) reduced the error of well illuminated pixels more than AWGbut was worse at
very bad pixels (H). Smoothing with maximal width improves the quality of flat
surfaces (I) but can lead to high errors at the edges due to directed blurring (J).

4.3 Comparison of the filters using Normalized Convolution

The filters with fixed width were the fastest and produced verysimilar results.
All investigations have shown that the weighted Gaussian filter (WG) with fixed
width leads to the same result as directional averaging in the complex plane with
A2. Both filters use the same technique (normalized convolution) and the same
weighting factors. A difference only occurs if many adjacent pixels differ by
more thanπ in phase. In most cases, the complex filter usingA as a weighting
factor performed worse than the WG and the AWG filter. Only with mask sizes of
11×11 or higher did the weaker penalization of a low amplitude pay off since the
effect of directed blurring was not that strong. This filter corresponds to weighting
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Table 1: Computation time in [s] for an image with 160 by 120 pixels of medium
quality (the room scene) and a large number of convolutions (steps) for AWG in
the scale selection process. The time is averaged over 100 runs and the empirical
standard deviation is given.

n AWGsteps AWG AdMed (MAD) AdMed (A) WG Complex-A2

3 45 1.27±0.03 2.60±0.04 0.98±0.02 0.0054±0.0001 0.023±0.001
5 78 3.18±0.09 2.64±0.04 1.00±0.02 0.0066±0.0003 0.042±0.001
7 112 6.0±0.5 2.70±0.07 1.02±0.02 0.0073±0.0006 0.072±0.007

Table 2: Computation time in [s] for an image with 160 by 120 pixels of poor qual-
ity (the box, see Fig. 8) and a small number of convolutions (steps) for AWG in
the scale selection process. The time is averaged over 100 runs and the empirical
standard deviation is given.

n AWGsteps AWG AdMed(MAD) AdMed(A) WG Complex-A2

3 9 0.16±0.01 2.61±0.03 0.99±0.01 0.005±0.001 0.024±0.001
5 16 0.32±0.01 2.67±0.03 1.00±0.02 0.007±0.001 0.044±0.001
7 22 0.53±0.01 2.70±0.04 1.03±0.02 0.007±0.001 0.071±0.001

directly on the raw data which implicitly makes use of the amplitudes and takes
place in the complex plane as well.

In slightly overexposed regions where the modulation amplitude is still high,
all fixed width filters performed better than the AWG since thelatter does not
smooth at all at these amplitudes. Adjacent to slightly overexposed pixels, there
are either pixels without overexposure but sufficient illumination (and higher am-
plitude) or others with even more saturation effects (and lower amplitude [11]).
In these cases, non-adaptive amplitude-weighted filteringalways produces more
reliable information (see Fig. 7, F). If the overexposed regions are too large, only
the edges to non-saturated regions benefit from filtering.

Considering the effect of directed blurring, the adaptive approach is superior to
the non-adaptive. This is clearly illustrated at the dangling cable in Fig. 3 (marker
E). Overall, adaptivity pays off in all observed scenes: theepp is always somewhat
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lower as one can see in Fig. 4 left (WG corresponds to a variance threshold of 0)

Figure 7: Four depth images of the hose scene acquired with 20ms integration
time. The region marked with F has a strong bias due to overexposure. Only the
weighted Gaussian filters with fixed width were able to correct this bias.

4.4 Comparison of the Median Filters

In the first brief discussion of Fig. 3 we mentioned that the adaptive median using
MAD left a surprisingly large number of outliers in the image. This occurs in
regions with high standard deviation and low amplitude. Thereason is that at van-
ishing amplitude the depth values within the unambiguous range are only sparsely
populated due to strong quantization errors [11]. Taking the median of such a set
of pixels always leads to the same value which in turn leads toa vanishing MAD
value (see Fig. 8). These pixels are not smoothed by the adaptive median except
if the detector’s MAD threshold is set to zero (that is to say taking the median

18



nonadaptively). Therefore the simple median or the adaptive median usingA as a
threshold performed better in the case of very low amplitudepixels.

All median filters completely removed fine structures in the depth images such
as the cable in Fig. 3 (marker E). In return, outliers are removed by the median and
the adaptive median using the amplitude, too. At acceptablyilluminated regions
or when adapting with respect to the amplitudeA, the results are comparable to
the AWG filter and better than that of the WG’s. In the case of very large mask
sizes, the median filters performed best since they cause no directed blurring.

Figure 8: Regions with low amplitude are subject to strong quantization effects
such that only few different depth values are possible. Thisleads to frequently
occurring values and in consequence to a low MAD value even ifthe variance is
high. The original scene shows an open box and background. Left: The spatial
MAD value is zero for many pixels with low signal amplitude since the pixels
populate only a few particular depth values there.

5 Conclusion and Outlook

We discussed various approaches to the denoising of depth maps obtained by TOF
3D cameras. Two main concepts and their variations have beeninvestigated: nor-
malized convolution with different weighting factors and median filtering, both in
adaptive and in nonadaptive variants. An assessment has been performed using
qualitative and quantitative methods. It has turned out that the inverse squared
amplitude is indeed a reliable measure of confidence, as predicted by theory. The
WG filters with fixed width and weighting withA2 have performed well in all
scenes if used up to a maximal mask size of7 × 7. For larger mask sizes, the
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effect of directed blurring leads to large errors. They are the only ones to cope
with small patches of overexposure and offer the fastest computation.

However, the fixed width filters unnecessarily blur the “good” pixels. There,
the error can become larger than the error of the unfiltered image. The adaptive
weighted Gaussian filter (AWG) uses smaller Gaussian widthsat the edges than
the WG filters and therefore has a reduced error at the edges. The adaptive median
using MAD as a threshold has difficulty coping with the quantization effects of
the data. However, if the modulation amplitude is used as thethreshold, results are
comparable to that of the AWG filter except for the drawback that small structures
are completely suppressed and the advantage of better edge preserving. Consider-
ing the mean absolute error per pixel (epp) the AWG filter can reach better results
even with suboptimal parametrization (see Fig. 4). Neglecting computation time,
it is superior to all filters investigated.

All proposed filters can be implemented non-iteratively. Further effort could
be directed towards iterative approaches or bilateral filters [42] to overcome the
discussed effect of directed blurring.
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