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Abstract Most industrial robots perform a periodically re-
peating choreography. Our aim is to detect disturbances of
such a periodic process by a visual inspection system that can
be trained with a minimum of human effort and interaction.
We present a solution that monitors the robot with a time-
of-flight 3D camera. Our system can be trained using a few
unperturbed cycles of the periodic process. More specifically,
principal components are used to find a low-dimensional ap-
proximation of each frame, and a One-Class Support Vector
Machine is used for one-class learning. We propose a novel
scheme for automatic parameter tuning, which exploits the
fact that successive images of the training class should be
close in feature space. We present exemplary results for a
miniature robot setup. The proposed strategy does not require
prior information on the dimensions of the machine or its ma-
neuvering range. The entire system is appearance-based and
hence does not need access to the robot’s internal coordinates.

1 Introduction

Industrial environments require reliable security solutions for
an accident-free cooperation of humans and autonomously
working machines. The simplest, and least flexible, solution
is to separate man and machine by static safety margins such
that any space potentially occupied by the machine cannot be
entered by humans. These boundaries can either be of a phys-
ical nature or can, for instance, be guarded by light curtains
which raise an alarm or stop the machine when trespassed.
Recent approaches employing both local and global sensors
range in complexity from mere intrusion detection to full-
fledged human-robot cooperation: A “skin” of haptic sensors
for collision detection is investigated in [1,2]. In [3,4],a wrist
mounted laser scanner is introduced which allows to monitor
the proximity between man and robot. Algorithms for colli-
sion avoidance using such a scanner have been proposed in
[5].

Global sensors, in contrast to local sensors, monitor the
entire machine workspace. The challenge with such an ap-

proach is to be sensitive to obstacles in the working path
while tolerating the actions of the robot itself as well as vary-
ing environmental conditions, e.g. illumination. An earlyat-
tempt to the automatic detection of humans in video data was
presented in [6]. Features such as height, width and area (in
pixel space) are extracted from the object shape which is ob-
tained by a difference-image method. The classifier consists
of hyper-rectangles (thresholds) in this feature space. The
methods proposed in [7,8] use skin color to discriminate hu-
mans from other moving objects in sequences acquired with
video cameras. In [9], a backprojection method is proposed
that reconstructs the positions of obstacles in the working
space in world coordinates from multiple images. In [10], sta-
tionary cameras are used as passive light barriers. The scene
is segmented into a variable foreground and supposedly con-
stant background, and changes in the background are detected
and interpreted as violations of the working space. In [11,12],
difference-image methods with multiple cameras as proposed
in [13] are used to detect obstacles and to enable path plan-
ning. A method for monitoring predefined areas of interest
with a gray-scale camera is presented in [15]. The task of
obstacle detection or intrusion detection is methodologically
closely related to the computer-vision based defect detection
task (see [14] for a survey on such approaches) where the
input data is often also of sequential type (e.g. in [16]).

Our aim has been to develop an intrusion detection scheme
that can be configured with an absolute minimum of human
interaction: the device is composed of a depth sensor with
spatial and temporal resolution and a computer. The idea is
to adjust the sensor’s field of view such that it can survey
the machine motion to be monitored, but is blinded fromper-
missiblegeometric changes in the environment, e.g. in the
background of the machine. For training, the sensor needs to
acquire a fewunperturbedcycles of the machine’s scheduled
periodic movement; during those cycles, the human operator
has to guarantee that no intrusions occur. The device should
then configure itself to detect any subsequent deviations from
the desired motion pattern, in particular to detect intrusions
into the sensor’s field of view. Whenever such a deviation oc-
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Amplitude Image of a Moving Robot, Frame 13
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Amplitude Image of a Moving Robot, Frame 30
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Depth Image of a Moving Robot, Frame 13
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Depth Image of a Moving Robot, Frame 30
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Fig. 1 Two frames (left to right) of a training sequence of unperturbed robotoperation. Top row: Amplitude image of backscattered infrared
radiation in arbitrary units. Bottom row: Color-coded depth map with shade indicating distance in meters. Noise and motion artifacts at
surfaces with low reflectivity (black in the amplitude images) are apparent.

curs, the device will raise an alarm which can, for instance,
be used to stop the machine.

Although our approach does not allow for direct human-
robot interaction (since it only provides a global alarm and
cannot localize obstacles), it works out of the box: It only
requires the sensor setup and a single button to initiate and
end the training phase, and a channel to pick up and propa-
gate the alarm signal. We present an implementation of our
concept using a time-of-flight range camera together with
the intrusion detection algorithm sketched in the following.
First, we project the high-dimensional sensoric outputs – the
depth maps – onto a low-dimensional subspace by a map-
ping which is learned during the training phase by means of
principal component analysis (PCA), cf. Section 2.2. Second,
we learn the permissible machine motion pattern in this low-
dimensional space using a One-Class Support-Vector Machine
(OC-SVM), given observations which are guaranteed to be

free from perturbations (Section 2.3). Finally, the outputfrom
the OC-SVM is used to detect deviations from the allowed
periodic motion pattern. There, our main contribution is the
automated adjustment of all OC-SVM parameters by exploit-
ing a problem-specific connectedness assumption.

2 Sensor and Algorithmic Preliminaries

2.1 The Camera

For image acquisition, we use a continuous-wave time-of-
flight (TOF) 3D camera working in the infrared regime [17,
18]. The acquired depth maps have the advantage of being
mostly illumination invariant. The camera works as follows:
Infrared light modulated with radio frequency is emitted by
diodes and backscattered from the scene. Each pixel of the
sensor chip detects this light and correlates the signal with the
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electronic modulation signal directly after charge generation.
From three or more of these correlated signals, the phase shift
of the backscattered light and hence the distance can be calcu-
lated [17]. The variance of the estimated distance stronglyde-
pends on the amplitude of the signal amplitude and is subject
to structured noise [19]. We therefore apply adaptive normal-
ized convolution filters [20] for noise reduction. The results
reported here are obtained from a prototype (PMD[vision]
19k, PMDtec, Siegen, Germany) which delivers depth maps
and amplitude images at a resolution of160× 120 pixels and
a frame rate of about 10 Hz.

2.2 Dimensionality Reduction and Motion Trajectory

A m×n depth map of a 3D scene is represented by a vector
in N = m·n-dimensional space. A sequence of frames hence
corresponds to a manifold in thisN -dimensional space, and
can be summarized by a vectorµ representing the mean im-
age, as well as a matrixX whose columns are given by the
vectorized depth images minusµ.

Fig. 2 The training trajectory after projection onto the first three
principal components (PCs). The circles represent frames that were
actually observed, the line segments connect pairs of consecutive
frames. In most cases, the trajectory is more closely sampled in
phases in which the robot slows down to change direction. Sam-
ples are more sparse in phases in which the robot moves, and hence
changes appearance more quickly.

The intrinsic dimensionality of virtually all movies is much
smaller than the number of pixelsN (as illustrated in Fig. 3);
to simplify learning of the repetitive motion pattern, it isad-
vantageous to first map the data to a subspace whose dimen-
sionality is sufficient but not excessive. Numerous nonlinear
methods for such a dimensionality reduction have been pro-
posed, e.g. [21–23,29]; however, the simple and well-known
linear method PCA has proven successful in our application
scenarios. The left singular vectors ofX are the principal
components, or “eigenfaces”. This set of principal compo-
nents constitutes a new orthogonal basis for the observations,

and a user-selected subset spans an optimal linear subspace.
Fig. 2 shows a movie of a periodically moving machine pro-
jected onto this subspace.

If the movie shows a periodic motion, the corresponding
trajectory in image space is a closed (but not necessarily cir-
cular) loop. Note that this is true for any periodic motion,
circular or not: For any scene showing an arbitrary periodic
motion, the pixel values of any two frames with a temporal
distance of one period are almost equal, and their correspond-
ing points in the full image space or the principal components
subspace are thus close to each other (Fig. 2).

The entire trajectory represents the class of permissible
geometric configurations of the machine during its action cy-
cle. During the training phase, this manifold can be learned
(see next section). Once training is completed, the surveil-
lance phase can start. During surveillance, any new and previ-
ously unseen depth map will be projected onto this subspace.
If the current depth map is free from undesired perturbations,
its projection will end up in the proximity of the learned man-
ifold, indicating that the machine is in a secure state. If the
depth map contains an obstacle, the projection will deviate
from the learned trajectory, and an alarm can be raised.

2.3 One-Class Support Vector Machines (OC-SVM)

The training phase only yields “negative” examples, i.e. sam-
ples from the class of permissible geometric configurations.
“Positive” examples, corresponding to process deviationsthat
should be detected by the system, are not available. We are
hence faced with a “one-class” learning problem and thus
use a One-Class Support Vector Machine (OC-SVM) [24],
a relative of standard Support Vector Machines (SVM)[25].
Like in SVMs, OC-SVM linearly separates the data in an
implicit nonlinear high-dimensional kernel-space [25]. When
projected back to the original feature subspace, the linearde-
cision boundary becomes a non-linear “contour” surface that
delimits the support of the normal observations in feature
space.

OC-SVM estimates the proximity of a new, unseen ob-
servation to the set of negative training examples. For a radial
basis function kernel (RBF), one must select two parameters:
the width σ of the Gaussian kernel function used to mea-
sure the similarity of two observations, and the thresholdθ

on the proximity. The classification performance depends on
this crucial choice. An appropriate kernel width and thresh-
old produces a closed “tube” enclosing the entire trajectory
of the training points such that each line segment between
two consecutive frames is inside the tube. A too low prox-
imity thresholdθ or a too large kernel widthσ yields a tube
that is too wide and may possibly produce false negatives,
i.e. tolerate scenes for which an alarm should be raised. Ifθ

is chosen too high orσ too low, the closed training trajectory
becomes fragmented into multiple “islands” and gives rise to
false alarms unless a very large training set is available. Based
on these considerations, we propose a novel method in Sec-
tion 3.2 to adjust these important parameters automatically.



4 Mario Frank1, Fred A. Hamprecht2

Fig. 3 The eigenvalues of the training sequence drop quickly. Therefore, a low-dimensional subspace spanned by only four eigenvectors
(vertical line) suffices to approximate the data. This graph shows only thelargest 50 eigenvalues out of 499 nonzero ones.

Fig. 4 The first four principal components of a training sequence of undisturbed robot operation suffice to distinguish safe working states
from intrusions. The image can, in addition, be segmented into background and operative range by summing up the absolute values of these
PCs (contour plot). White pixels indicate background (bottom right).

3 Automated Training under Connectedness
Regularization

This section elaborates on a proof-of-principle realization of
the proposed concept. We set up a programmable toy robot
performing complex periodical motions as the monitoring task.
We record a training sequence of 500 frames during unper-
turbed robot operation, covering approximately ten motion
periods. Then we train an OC-SVM classifier on this sequence,

which is represented in a subspace spanned by the first few
principal components.

3.1 Subspace Configuration

Choice of the Principal ComponentsThe eigenvalues of the
principal components are dropping quickly such that one can
expect to approximate the images sufficiently well by pro-
jecting them on a low-dimensional subspace only. The scree



Image-Based Supervision of a Periodically Working Machine 5

plot in Fig. 3 has a small shoulder at eigenvalues three and
four, indicating that they have a similar importance in de-
scribing the sequence. In this particular example, we have
chosen to take the first four dimensions for training the classi-
fier, covering roughly 40% of the overall variance in the train-
ing sequence. This choice is a tradeoff between approxima-
tion quality (improving with more principal components) and
the difficulty of density estimation / outlier detection (also
growing with more principal components for a constant num-
ber of observations). The number of principal components is
varied for each of the experiments presented below to inves-
tigate the influence of this choice.

A method for background detectionPixels always showing
a constant scene background, regardless of the current pose
of the robot, are never occluded by the moving machine or its
parts and will hence be constant, up to noise, during the train-
ing phase. Consequently, the first principal components ex-
hibit low amplitude at these pixels, as can be seen from Fig. 4.
When a frame is projected to these first principal components
only, the low-amplitude regions of the basis functions will
cancel all deviations from the mean image in those regions.
This masks out all events that are happening within the field
of view, but beyond the operative range of the robot. These
pixels are still of interest, however, because an approaching
invader should be detected before he or she reaches the actual
maneuvering range, giving time to e.g. slow down or stop the
machine.

The detection of such situations with imminent risk of
collision formulates an additional surveillance task which is
independent of the surveillance of the operation space. It re-
quires a segmentation between the area where the robot moves
(the maneuvering range) and the adjacent neighborhood. We
use the thresholded sum over the absolute values of the first
few principal components (see Fig.4, top right) to define an
auxiliary mask that comprises all pixels within the maneuver-
ing range of the machine. An additional basis function (Fig.4,
bottom right) can finally be obtained as the complement of
this mask: it has nil values inside the maneuvering range and
one outside. We will refer to this mask as the background de-
tector. All projections of “normal” images onto this auxiliary
basis function lead to values varying slightly around zero.
However, if there is an object close to the operative range,
the projection yields a larger value. To classify such events,
one simply has to apply a threshold that copes with small ran-
dom deviations from zero due to noise. We automatically de-
termine this threshold using the following heuristic. First, we
compute the variance of the projection of the negative train-
ing images onto the background detector. Then, we set the
threshold twice as high as this variance.

3.2 Automated OC-SVM Configuration

For classification, we use a One-Class SVM with a Gaussian
RBF kernel from the publicly available SPIDER packet [28].
With such a kernel, the training samples are always linearly

Fig. 5 Proximity to a training sequence that was projected onto
the first two principal components. The crosses are training sam-
ples interpolated with white lines. Top: If the kernel width is cho-
sen too small, areas between temporally adjacent trajectory points
are flagged as outliers: the trajectory becomes fragmented. Bottom:
Appropriate choice of the kernel width. Applying a threshold on the
proximity creates a “tube” partitioning the feature space into accept-
able and outlying states.

separable from the origin in the corresponding feature space
since they are all lying on a sphere within the first orthant as
shown in [24].

The RBF kernel widthσ determines the nature of the non-
linear projection to a higher-dimensional space that is im-
plicitly performed by the OC-SVM. Its choice is crucial: it
scales the similarities of observations in the implicit high-
dimensional kernel space and thereby determines how fine-
grained the proximity estimation back in the principal com-
ponent subspace becomes. For largeσ, the “tube” becomes
smoother and larger; in the extreme case, a single hypersphere
comprising all negative training examples results. For small
σ, the tube will fragment into islands, resulting in the extreme
case in a small hypersphere around every single training ex-
ample (see Fig. 5).

With this in mind,σ can be considered as a regulariza-
tion parameter that – together with the proximity thresholdθ

– influences the shape and bore of the tube enclosing the tra-
jectory of the training sequence in the input space and, more
importantly, determines if this tube is connected. The param-
etersσ andθ must be chosen such that all true negative events
are inside the tube and all true positives outside.
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The proximity thresholdθ (see Section 2.3) can be cho-
sen automatically in a fast and convenient manner: since the
proximity drops rapidly at a short distance from the train-
ing points (see Fig.5), we select the threshold to be ten times
smaller than the smallest proximity that one of the training
samples has to the others, as measured by the OC-SVM (the
proximity is∈ [0, 1] where1 means that a sample coincides
with another). In Fig. 6 theθ parameter that has been selected
in such a way is plotted as a dashed line.
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Fig. 6 Logarithmic proximity of points in PC subspace, as measured
by OC-SVM with three different kernel widthsσ. The crosses in-
dicate points from the negative training class (the actually observed
frames), the circles are linear interpolations in PC subspace between
consecutive pairwise training samples. The dashed line represents
the proximity thresholdθ that discriminates between the training
class and the complementing space.θ is always chosen ten times
smaller than the smallest proximity measure of the training sam-
ples. The algorithm increases the kernel widthσ until the proximity
measure of each interpolated point is higher thanθ.

We select the second parameter, the kernel widthσ, in
the following way. We exploit the fact that the training sam-
ples have a temporal ordering and are not just independently
sampled from a static distribution. If the sampling rate of the
sensor were infinitely high, the training sequence would thus
provide a connected line in PC subspace. This connected-
ness assumption implies that, for an adequate sampling rate,
all points on the line segment between any two consecutive

training examples in PC subspace should also belong to the
negative class of permissible machine states.

Therefore we propose to regularize the SVM by in the fol-
lowing algorithmic procedure: First, train the classifier on the
input data using a very small initial kernel widthσ0 result-
ing in a proximity landscape that rapidly decays away from
the individual training samples. The proximity thresholdθ
which is, for eachσ, chosen to be one order of magnitude
smaller than the smallest proximity at any training point, par-
titions the feature space into complementary regions of large
proximity (negative prediction) and low proximity (positive
prediction, alarm). Then, iteratively increase the kernelwidth
until all points on the line segments between any two consec-
utive training examples end up inside the proximity boundary
defined byθ. Any further increase inσ is avoided because it
may entail false negatives. Three iterations of this parameter
search procedure are illustrated in Fig. 6.

Provided that the frame rate is sufficiently high, linear in-
terpolation between two consecutive training points is a good
choice for data representing the operation of a robot.

4 Results

This section provides a quantitative assessment of the pro-
posed method and of the influence of various external con-
ditions and deviations from the ideal case. The experiment
is set up as follows. A training scene and a test scene is ac-
quired showing a periodically working robot. During acqui-
sition of the training scene, the robot operates normally. In
the test scene we repeatedly violated the operation space of
the robot by moving a hand in various ways inside that space
(without collisions). Both movies are denoised by the adap-
tive filter described in [20]. Then, by applying PCA on the
training scene, the classification subspace is selected. The
OC-SVM classifier and the background detector are trained
on the training scene as described above and applied to the
test scene. In order to compare to a ground truth, we manu-
ally labeled all frames of the test scene based on visual in-
spection. The true positive rate is then the number of frames
that are correctly classified to show operation space viola-
tions divided by the frames that actually are, according to the
human inspector, such violations. In turn, the false positive
rate is the fraction of frames classified as a violation while
actually showing undisturbed operation. The results of allex-
periments are graphically presented in Figure 7. In all plots,
the lines indicate the receiver operator characteristic (ROC)
curve for varying discrimination thresholdθ, whereas the cir-
cles indicate the accuracy achieved by the threshold that was
automatically selected by the proposed heuristic.

As can be seen in the top left plot in Figure 7, the false
positive rate of the OC-SVM classifier is very low as desired,
whereas the true positive rate is not optimal. There are two
reasons for this deviation. First, the heuristic used to train the
classifier, optimizes on the true negative rate. The kernel size
of the SVM is increased until all temporal interpolations of
successive training samples are classified as valid machine
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Fig. 7 Influence of the discrimination threshold on the classification error for various numbers of used principal components. The circles
on the ROC curves highlight the threshold selected by our heuristic. Top left: default configuration with denoising of each frame. Top right:
Results without denoising. Bottom left: Influence of camera resolution. Bottom right: Performance of the background mask; see discussion
in the text.

states. Lacking positive training samples, the discrimination
boundary can thus possibly come too close to the subspace of
potential positive observations. These borderline cases con-
tain either tiny intruders of the machine’s operation spaceor
bigger intruders that only slightly penetrate that space. Sec-
ond, the manual labels given to the test set are perhaps overly
conservative, in the sense that a careful human when inspect-
ing a frame in which a hand almost reaches the maneuvering
range, usually rates the frame as an operation space violation,
even though this might not yet be the case.

Framewise inspection of the classification result supports
both explanations. The frames with missed detections (posi-
tive manual labels and negative OC-SVM prediction) are al-
ways at the beginning or the end of the short sequences that
show intrusions, as can be seen in Figure 8. These frames
show the moment when the intruder is about to penetrate or
leave the machine’s operation space. Such borderline frames
were always labeled as positive by the human expert, possi-
bly including cases where there is no actual intrusion shown.
In the video, given as supplementary material1, the reader

1 www.mariofrank.net/monitoring/robot.avi

may judge these cases his- or herself. In cases with actual
intrusions, the part of the intruder that penetrates the opera-
tion space is so small that detection is very hard. However,
in such cases, the complementary classification given by the
background detector already raises an alarm which could be
used for improved security.

0 50 100 150 200 250 300

negative

positive (alarm)

framenumber

Classification Result vs. Manual Labels

 

 
human

OC−SVM

Fig. 8 Comparison of a classification result between OC-SVM and
a human. False negatives of OC-SVM are predominantly at the be-
ginning or the end of intrusion sequences.

4.1 Influence of Subspace Dimensionality

The top left plot in Figure 7 shows the ROC curve of six clas-
sifiers (and the curve for random guessing), each one trained
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in a subspace of different dimensionality, reaching from two
to seven. The performance is pretty robust to the number of
principal components: choices between four and seven result
in only negligible changes of accuracy. However, when using
three or two principal components only, performance breaks
down. The trend of the corresponding eigenvalues illustrated
in Figure 3 already suggested that most variation is captured
by the first four or five eigenvectors.

4.2 Influence of Noise

The experiment described above was carried out on denoised
images [20]. Without filtering, the data exhibits strong mo-
tion artifacts and noise. In particular, those parts of the robot
with very low infrared reflectivity exhibit high variance in
the distance estimation. As can be seen in the top right plot
in Figure 7, this significantly decreases the classificationac-
curacy: the false positive rate increases. Therefore, and given
that the denoising step can be performed fast, we advocate
using a filter.

4.3 Influence of Camera Resolution

The resolution of the camera has only minor influence on the
classification accuracy. In Figure 7 middle right, the ROC
curves on sequences with decreasing image resolution are
shown. The resolution of the original denoised images was
reduced by a factor from 1 to 5 via averaging. For this par-
ticular kind of data, averaging gives more informative results
than sub-sampling since it better mimics a design decision
that can often be seen in the context of continuous-wave time-
of-flight range cameras. The developers trade off resolution
against precision of range estimation. Fewer but bigger im-
age pixels result in a more reliable range estimation since the
signal strength is integrated over a larger area (in fact, more
recent implementations of this sensor type tend to have lower
resolution for this very reason). When merging four pixels
by averaging over them, we emulate a sensor with half the
resolution along each dimension but equal chip size.

4.4 Accuracy of the Background Detector

The background segmentation method described in Section 3.1
provides a simple yet powerful classifier. The bottom right
plot in Figure 7 depicts the ROC curves of this method against
the dimensionality of the classification subspace. Alreadythe
first two principal components suffice to properly segment
the background and thus to establish a reliable classifier. It
should be stressed that the true positive rate in Figure 7 is
overoptimistic due of the unbalanced test dataset available to
us. Every frame with an obstacle in the robots operation space
(a hand, see supplementary video) also contains an even big-
ger occlusion of the background (an arm). The false positives
are still low because (i) the intruding hand traverses the back-
ground region fast, (ii) the double-variance threshold is very

insensitive to small background occlusions, and (iii) the hu-
man expert, as discussed earlier, tends to raise the alarm a
few frames before the intruder actually penetrates the oper-
ation space. In summary, we advocate to use both classifiers
together (as illustrated in the video provided as supplemen-
tary material). Up to a small sum and a threshold operation,
the background mask is a byproduct of the dimensionality re-
duction step which makes its computational costs negligible.

4.5 Runtime

With the parameterσ set in advance, training with a MAT-
LAB implementation took approximately three minutes on
an Athlon64 at 2.2 GHz (2 GB RAM). Iterative parameter
training (cf. Section 3.2) can raise this time up to 20 min-
utes. Note, however, that training has to be performed only
once during setup, or when conditions or the operation mode
of the robot change. In surveillance mode, the classification
step itself is essentially instantaneous, while denoisingis of
the order of the frame rate.

5 Conclusion

We have presented an approach for monitoring a periodically
moving machine. The main contribution of this article is a
novel problem-specific regularization for the training algo-
rithm that makes the configuration of such a monitoring sys-
tem easy. After setting up the camera such that its field of
view contains the machine plus a safety margin around it, the
user simply has to acquire a few periods of unperturbed ma-
chine operation. Our method then parametrizes the classifier
automatically. An important advantage of the method is that
it works without detailed information of the geometry of the
observed robot or its operation space. Moreover, there is no
need to send signals from the robot controller to the classi-
fier. It works completely autonomously and is therefore easy
to set up.

The space behind the observed machine is occluded from
the camera. Therefore, depending on the geometry, an ad-
ditional detector with a complementary perspective may be
required. A multi-detector setup can still be monitored with
the algorithms introduced here: the measurements from the
different detectors can simply be concatenated to obtain an
augmented feature space; the rest of the calculations remains
the same.

Since the algorithms involved do not directly rely on the
fact that the images are depth images, they should, in prin-
ciple, work with conventional gray-scale or color cameras as
well. In practice, though, subtle changes in illumination will
lead to false positives, we hence recommend to resort to a
more illumination-invariant 3D camera.

The proposed system is conservative, in the sense that
sudden sensor failure or occlusion or geometric perturbation
will always lead to a departure from the training sequence,
and hence to an alarm.
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