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ABSTRACT
Role Engineering is a security-critical task for systems using
role-based access control (RBAC). Different role-mining ap-
proaches have been proposed that attempt to automatically
infer appropriate roles from existing user-permission assign-
ments. However, these approaches are mainly combinatorial
and lack an underlying probabilistic model of the domain.

We present the first probabilistic model for RBAC. Our
model defines a general framework for expressing user per-
mission assignments and can be specialized to different do-
mains by limiting its degrees of freedom with appropriate
constraints. For one practically important instance of this
framework, we show how roles can be inferred from data
using a state-of-the-art machine-learning algorithm. Exper-
iments on both randomly generated and real-world data pro-
vide evidence that our approach not only creates meaning-
ful roles but also identifies erroneous user-permission assign-
ments in given data.

Categories and Subject Descriptors
K.6 [Management of Computing and Information Sys-
tems]: Security and Protection

Keywords
RBAC, role mining, machine learning, clustering

1. INTRODUCTION
Role-based access control [7] is a popular, widely used

approach to administer permissions in security-sensitive en-
vironments. A role equips a user with a set of permissions
and ideally represents a function that the user has within
an enterprise. An access control system based on roles is
easier to maintain than one working directly with individ-
ual assignments of permissions to users. However, this re-
quires roles to be defined and users and permissions to be
assigned to them. This process, known as role engineering,
is a non-trivial challenge due to the high dimensionality of
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the solution space. It is also an essential and critical task
for using RBAC in real-world domains [4]. In most enter-
prises, this process is carried out manually, despite the high
costs this entails and the security risk due to erroneous as-
signments to roles. Automated approaches are therefore de-
sirable since they have the potential to dramatically reduce
both the costs and security risks.

One can distinguish two kinds of approaches to role en-
gineering: top-down and bottom-up. Top-down engineering
uses process descriptions, the organizational structure of the
domain, or features of the employees as given by the Human
Resources Department of an enterprise, to create roles. Cur-
rently, there are only manual top-down approaches. In [5],
for instance, a work flow is proposed to manually engineer
roles by analyzing business processes. In [14], a scenario-
driven approach is presented where a scenario’s requirements
are analyzed according to its associated tasks. Permissions
are granted that enable the task to be completed.

Bottom-up role engineering identifies roles by analyzing
the existing assignments of users to permissions. Roles, and
assignments from roles to users and from roles to permis-
sions, must be found that approximate the existing user-
permission assignments as best possible while limiting the
number of roles that must be maintained. A number of au-
tomated, bottom-up approaches exist and, in this context,
role engineering is often referred to as role-mining.

Existing bottom-up methods aim to approximate the user-
permission assignments as best possible by finding a mini-
mal set of roles, user-role assignments, and role-permission
assignments, using mainly combinatorial methods. Such ap-
proaches have two major drawbacks. First, the existing as-
signments may contain errors. If the approach does not al-
low one to predicate how likely it is to observe a particular
assignment, these errors cannot be identified as such and
therefore are migrated to the RBAC system. Second, role
engineering is not just a data compression problem. The
roles should be as meaningful as possible with respect to
the users assigned to them. They should ideally represent
the particular job functions that groups of users have in a
domain. Combinatorial methods that aim to minimize dif-
ferences with the original assignments often result in syn-
thetic roles that are difficult to understand and generalize
poorly to new users.

These problems result from the lack of an underlying sta-
tistical model for role mining. In this paper, we propose a
class of probabilistic models that subsumes different bottom-
up role engineering scenarios for RBAC. We show how par-
ticular instances of our model class can be defined according
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to the given domain requirements. The advantage of a prob-
abilistic approach is the ability to generalize from observa-
tions about existing assignments. This allows us to identify
wrong or missing assignments and avoids the migration of
these errors. Moreover, generalization facilitates the addi-
tion of new users with minimal information about them.

A statistical approach has another major advantage com-
pared to pure combinatorial algorithms: A large number of
users and permissions will improve the result since observ-
ing many existing user-permission assignments supports im-
proved predictions of the model parameters. In contrast,
combinatorial models suffer from increased computational
costs and the tendency to perturb succinct role definitions
by exceptions and erroneous user-permission assignments.

We also address algorithmic aspects in this paper and
show, for one of our models, how to adopt standard infer-
ence algorithms to solve the role mining problem. We design
experiments on randomly generated and real-world data in
order to assess the quality of the resulting roles. Our results
support the thesis that using a sound probabilistic model is
advantageous for role engineering.

Overall, we see our contributions as follows. First, by
introducing a model class that expresses the role mining
problem in a probabilistic way, we provide an approach that
addresses the two problems mentioned above: our approach
prevents the migration of erroneous assignments to an RBAC
system by identifying errors and infers meaningful roles in-
stead of synthetic ones. Second, our model’s structure sup-
ports extensions to hybrid data mining approaches combin-
ing information in both a top-down and bottom-up way.
Such approaches are desirable since, for example, they sim-
plify adding new employees to the system. Finally, we in-
troduce two new quantitative measures on the quality of the
role engineering results.

The remainder of this paper is organized as follows. After
surveying related work in Section 2, we propose a new class
of probabilistic models for role mining in Section 3 and in-
troduce several instances of this model class. In Section 4,
we present an inference algorithm for one of these instances
and then we report on experiments with both generated and
real data. As part of our experiments, we compare our prob-
abilistic approach to the combinatorial method proposed in
[12]. In Section 5, we summarize our results and indicate
directions for future work.

2. RELATED WORK

Formal Representation.
The role-mining problem can be formulated as follows [16].

The user-permission assignments are given by an M × N
Boolean assignment matrix x. Rows represent users and
columns represent permissions. If xij = 1, then user i has
permission j, where i ∈ {1, .., M} and j ∈ {1, .., N}. An
M × K user-role assignment matrix z and a K × N role-
permission assignment matrix u must be found that express
the original matrix as the Boolean matrix product x = z⊗u.
This is product is defined by

xij =
∨

k

[zik ∧ ukj ] , (1)

where k ∈ {1, .., K} is the index of a role. Most role-mining
approaches use this model structure.

Role Interpretations and Algorithms.
In [16], roles are treated as sets of permissions: Each row

in u is a role, where membership of permissions in the role
is indicated by ones. Equivalently, a user i is characterized
by the set of permissions that he owns. In the above model,
these sets are determined by the row i in x. As we explain in
Section 3.1, this model is equivalent to one of the instances
of our model class if no underlying probability distribution
is considered. In the algorithm proposed in [17], all existing
users are initially considered as candidate roles. Thus, each
candidate role consists of all permissions that are assigned
to a particular user. Afterwards, candidate roles are picked
in a greedy manner to determine the final set of roles.

In [18], the roles are also represented as sets of permis-
sions. Candidate roles are generated and then merged, split,
or placed in a role hierarchy, as determined by a small set
of given rules. A similar procedure is proposed in [15]. But
there, roles and permissions are represented as sets of users.
Thus, using the notation above, a role k is a column k in z.
The initial roles are constructed from existing permissions.
Namely, an initial role is the set of users that are assigned to
a given permission (a column in x). Again, the initial roles
are iteratively merged, split, or placed in a role hierarchy
according to the cardinality of intersections of the roles.

In [10], roles are computed by randomly merging sets of
permissions. The merging process is iterated until there is a
complete tree structure of role proposals. From this tree, the
final roles are selected by analyzing the number of associated
users.

Equivalence with other Problems.
Three different variants of the bottom-up role-mining prob-

lem (RMP) are formally modeled in [16].

1. Find a minimal set of roles that express all existing
user-permission assignments (Basic RMP).

2. Approximate the existing assignments with a minimal
number of roles with a precision up to a given error δ
(δ-RMP).

3. Approximate the existing assignments with minimal
errors for a given number of roles (Min-Noise RMP).

The complexity of these problems is explored by analyzing
their associated decision problems. For example, Basic RMP
corresponds to the Set Basis Problem, defined in [8]: Given
a collection of sets S = {S1, S2, . . . , SN}, find a basis B =
{B1, B2, . . . , BK} with least cardinality K such that for each
Si there exists a representation as a union of a subset of
B. The solution proposed in [8] is a greedy algorithm that
chooses from the basis candidate sets Bk, constructed from
the pairwise intersections Si ∩ S′

i. In the context of role
mining, the basis sets Bk are the roles and the original sets
are the users Si represented as sets of their permissions.

Without focusing on role mining, [12] considers a variant
of the Set Basis Problem, called the Discrete Basis Prob-
lem (DBP). This problem requires approximating a collec-
tion of sets S = {S1, S2, .., SN} by a set of basis sets B =
{B1, B2, .., BK} with a given cardinality K. A greedy algo-
rithm is proposed in [12] that searches for such a basis set.
We will explain this algorithm in the appendix.

In [11], DBP is identified as a variant of RMP. There,
DBP, RMP, and SBP are formally modeled as binary inte-
ger programming problems. To approximately solve these
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problems quickly, the authors present an extension to the
greedy algorithm of [17].

3. A PROBABILISTIC MODEL
In this section, we present a new model of the role mining

problem and derive its underlying probabilistic representa-
tion. As seen in the last section, in existing approaches,
the role mining problem is usually modeled by decomposing
the user-permission assignment matrix x into the product of
two Boolean matrices z⊗u. This matrix representation ex-
hibits an inherent symmetry: Roles can either be regarded
as groups of permissions assigned to the same users (the
rows in u) or as groups of users sharing the same permis-
sions (the columns in z). This symmetric representation has
a major drawback: If users are only grouped according to
their permissions and permissions only according to their
associated users, then it is difficult to later add additional
features for users or permissions. However, this is a neces-
sary step for the extension of the model to a hybrid bottom-
up/top-down approach. Our model breaks this symmetry
by separately assigning users to user-groups and permissions
to permission-groups and afterwards assigns user-groups to
permission-groups. In this manner, users and permissions
can be grouped separately according to prior information.
In the following, we describe this decomposition in further
detail.

We assume that there exists a decomposition of the set
of users into groups that are not necessarily disjoint: Users
are assigned to one or more groups by a Boolean assignment
matrix z. Each row i represents a user and the columns
k represent user-groups. In practice, such a decomposition
may be performed by the Human Resources Department of
an enterprise, for example, by assigning users to divisions
in the enterprise according to defined similarities of the em-
ployees. If such data is lacking, then the decomposition may
just be given by the differences in the assigned permissions
for each user.

Moreover, we assume that there is a decomposition of the
permissions such that every permission belongs to one or
more permission-groups. These memberships are expressed
by the Boolean assignment matrix y. Here the lth row of y
represents the permission-group l and the jth column is the
permission j. The assignment of permissions to permission-
groups can be motivated, for instance, by technical simi-
larities of the resources that the permissions grant access
to. For example, in an object-oriented setting, permissions
might be grouped that execute methods in the same class.
Alternatively, permissions could be categorized based on the
risk that is associated with granting someone a particular
permission. Of course, permissions can also be grouped ac-
cording to the users who own them.

For the moment, we do not consider the structure of per-
missions and users but we simply assume that there exists
a prior structure. We denote user-groups by business roles
whereas permission-groups are referred to as technical roles.
Business roles are assigned to technical roles. We repre-
sent these assignments in a matrix u. The above-mentioned
Boolean assignment matrices have the following types:

• Users i to permissions j: xij ∈ {0, 1}, where i ∈
{1, .., M} and j ∈ {1, .., N}.
• Users i to business roles k: zik ∈ {0, 1}, where k ∈
{1, .., K}.

• Technical roles l to permissions j: ylj ∈ {0, 1}, where
l ∈ {1, .., L}.
• Business roles k to technical roles l: ukl ∈ {0, 1}.

Throughout this paper, the indices i, j, k, and l have the
above scope and are used to index the above objects. Using
this notation, the final M × N user-permission assignment
matrix x is determined by the Boolean matrix product

x = z⊗u⊗y with xij =
∨

k

[

zik ∧

(
∨

l

ukl ∧ ylj

)]

. (2)

With these conventions, Equation 2 expresses when a user
i is assigned to a permission j. This is graphically illustrated
in Figure 1(a) in Section 4: A user is assigned to a permis-
sion if there is at least one path in the graph connecting
them. As motivated in the introduction, we are interested
in what the probability of such an assignment is. Starting
from the logical expression, we derive below how likely it is
to observe an assignment of a user i to a permission j. Being
able to compute this probability, one can infer the unknown
assignments z, u, and y such that the direct assignments
x become most likely. In Section 4 we will give such an
inference algorithm.

Since a permission may belong to multiple technical roles
and a user may belong to multiple business roles, which in
turn may be assigned to multiple technical roles, a user can
be assigned to a permission in more than one way (cf. Fig-
ure 1(a): there may be multiple connecting paths). There-
fore, it is easier to express how a user may not be assigned
to a permission (we denote this by ¬x := x) rather than
computing the union over all possible assignment paths.

p (xij) = p




∨

k

[

zik ∧

(
∨

l

ukl ∧ ylj

)]

 ,
1 ≤ k ≤ K
1 ≤ l ≤ L

=
∏

k

p









zik ∧

(
∨

l

ukl ∧ ylj

)

︸ ︷︷ ︸

=:bk









=
∏

k







p
(
zik ∧ bk

)
+ p (zik ∧ bk) + p

(
zik ∧ bk

)

︸ ︷︷ ︸

=p(zik)







=
∏

k

[
p(zik) + p(bk)p(zik)

]
(3)

Note that in the step from the second to the third line, the
correct probability is only obtained when summing over the
probabilities of exclusive events (in particular: a ∧ b = a∨ b
but p

(
a ∧ b

)
6= p (a) + p

(
b
)
). Given the definition of bk, we

have that

p(bk) =
∏

l

p (ukl ∧ ylj)

=
∏

l

[p(ylj) + p(ukl)p(ylj)] . (4)

Therefore, substituting this into p(xij) yields

p(xij) =
∏

k

[

p(zik) + p(zik)
∏

l

(p(ukl)p(ylj) + p(ylj))

]

. (5)
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This expression can be conditioned on the binary entries of
y and z.

p(xij | zi, yj) =
∏

k

11−zik ·

(
∏

l

p(ukl)
ylj · 11−ylj

)zik

=
∏

k,l

p(ukl)
yljzik (6)

Using this, we can express the complete likelihood of the
user-permission assignment matrix given the business roles
and technical roles.

p (x | z,y)

=
∏

i,j

[1− p(xij | zi, yj)]
xij [p(xij | zi, yj)]

1−xij

=
∏

i,j



1−
∏

k,l

p(ukl)
yljzik





xij



∏

k,l

p(ukl)
yljzik





1−xij

(7)

The complete data likelihood is then given by

p (x, z,y) = p (x | z,y) p (z) p (y) . (8)

3.1 Instantiation by Introducing Constraints
The above model of user-permission assignments in an

RBAC environment defines a very general framework. In
particular, we have avoided any assumptions about the prob-
abilities of the entries of u, y, and z. In the derivation, we
have only exploited the fact that these variables are Booleans
and, therefore, they only take the values 0 or 1. Also, we
have avoided any assumptions about the processes that lead
to a particular decomposition of the set of users and the
set of permissions. Moreover, we have not specified any
possible constraints on the user decomposition, the permis-
sion decomposition, or the assignments from user-groups to
permission-groups.

It turns out that this general model (as we will subse-
quently refer to it) has more degrees of freedom than re-
quired to represent the access control information present
in many domains that arise in practice. It can be seen as
a template for an entire class of models. By introducing
constraints, we can instantiate this template to specialized
models that fit the requirements of particular RBAC en-
vironments. These instances of the model class are given
by augmenting the general model with assumptions on the
probability distributions of the binary variables and giving
constraints on the variables themselves. In the following, we
will present three different models, which provide evidence
of the generality of this model class.

Trivial Decomposition of the Set of Permissions.
In this model, each permission is restricted to be a member

of only one permission-group and each permission-group can
contain only a single permission. Formally:

(

∀l :
∑

j
ylj = 1

)

∧
(
∀j :

∑

l
ylj = 1

)
. (9)

The conditioned likelihood then becomes

p (x | z) =
∏

i,j

[

1−
∏

k

p(ukj)
zik

]xij
[
∏

k

p(ukj)
zik

]1−xij

.

(10)
This “collapsed” model has the same symmetry present in
the original model, which was discussed in the introduction.

Equivalently, the same constraints could instead be applied
to the users, leading to a model with the same structure.
Due to this symmetry, the model is not capable of repre-
senting a distinction between business roles and technical
roles.

This model suffices, however, to approximate existing as-
signments in a pure bottom-up approach. If we constrain the
total number of roles, then we derive a probabilistic version
of the Role Mining Problem defined in [16] and the Discrete
Basis Problem presented in [12]. A graphical representation
of the structure of this instance is given in Figure 1(b).

Upper-bounded Assignments to the User-groups.
It is useful in some domains to place an upper bound

kmax on the number of business roles that a user belongs to:
∀i :

∑

k
zki ≤ kmax. Suppose, for example, that company

employees can be classified based on the different business
areas that they work in or the different kinds of contracts
they have. The business roles can be used to formalize these
categories on the set of employees. Moreover, this structure
would naturally limit the number of business roles, e.g., to
the number of different contract categories. Such a setting
would also support the addition of new users to the system
by Human Resources.

Note that even with a limited number of business roles, a
user may have multiple technical roles.

Disjoint Decomposition Model.
Our next model has even stronger constraints. Namely,

kmax = 1 and the number of assigned permission-groups per
permission is limited to lmax = 1. This formalizes that each
user belongs to exactly one user-group and each permission
belongs exactly to one permission-group. Hence, both users
and permissions are partitioned into disjoint business roles
and technical roles, respectively. Some enterprises favor a
disjoint decomposition because it reduces the complexity of
the system while still retaining a high degree of flexibility,
since users of a given user-group may still be assigned to
multiple permission-groups. The technical advantage of this
model is that inference is much easier if the business roles
and the technical roles are disjoint. This can be seen in the
conditioned likelihood, which now takes the convenient form

p (x | z,y) =
∏

k,l

[1− p(ukl)]
n
(1)
kl [p(ukl)]

n
(0)
kl with (11)

n
(1)
kl =

∑

i:zik=1,

j:ylj=1

δ(xij − 1), n
(0)
kl =

∑

i:zik=1,

j:ylj=1

δ(xij) .

Thus, we essentially have to count the number of assign-

ments n
(1)
kl (missing assignments n

(0)
kl ) for each (user-group,

permission-group) pair (k, l). Since both the user and per-
mission groups are disjoint, there is a simple, illustrative
representation for data generated or inferred by this model.
Namely, the original assignment matrix x can be drawn with
an order on the rows and columns that is given by the as-
signments to the groups. All rows (users) of the same group
are ordered adjacent to each other and all columns (permis-
sions) of a permission group are also ordered adjacent to
each other. See Figure 2(b) for an example of this represen-
tation. The model structure is illustrated in Figure 1(c).

In the next section, we will describe an existing algorithm
for inferring model parameters and illustrate it for this in-
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Figure 1: Illustration of the structure of three model instances. A user has a permission if there is at least
one path connecting them. a) Full model. b) Model with trivial decomposition of the permissions. c) Disjoint
Decomposition Model with only one business role per user and one technical role per permission.

stance of the model class. Afterwards we will present exper-
imental results on both generated and real data.

4. INFERENCE FOR THE DISJOINT DE-
COMPOSITION MODEL

In this section, we present an inference algorithm well-
suited for inferring model parameters for our last model,
the Disjoint Decomposition Model (DDM).

The likelihood function p (x | z,y) in Equation (11) ex-
presses how probable it is to observe the actual user-permis-
sion assignments x for given values of the parameters z and
y. Given this function, the maximum likelihood principle
provides a basis for selecting the parameters z and y that
yield the highest probability of the data x. The underlying
probability distributions of the binary assignment variables
p(ukj) is assumed to be Bernoulli, i.e., p {ukl = 0} = βkl, for
0 ≤ βkl ≤ 1. Under this assumption, the conditioned data
likelihood of DDM is

p (x | z, y, β) =
∏

k,l

[1− βkl]
n
(1)
kl [βkl]

n
(0)
kl . (12)

The equations for the other instances from Section 3.1 can
easily be produced by substituting the probabilities into the
respective likelihood functions.

Maximizing the likelihood is a non-trivial optimization
problem since the parameter space often has a high dimen-
sion. There exist many methods in the literature and survey-
ing them would exceed the scope of this paper. Therefore,
we limit ourselves to describing the main ideas behind an off-
the-shelf algorithm that we have straightforwardly adapted
to our problem.

The structure of the DDM is equivalent to the structure
of the Infinite Relational Model (IRM), presented in [9].
The IRM is used there to cluster objects (here the users)
to object-groups (user-groups) by their relations to features
(the permissions). Reciprocally, features (permissions) are
partitioned into feature-groups (permission-groups) accord-
ing to their relation to objects (users). We essentially solve
the same problem (infer the zik and ylj) with the addi-
tional objective of deciding which user-groups are assigned
to which permission-groups (infer the ukl). Hence, we can
use the same assumptions on the underlying probability dis-
tributions given in [9], which we summarize in the next sec-
tion.

4.1 A Gibbs Sampling Algorithm
We now describe a sampling algorithm that can be used

to infer the model parameters of the Disjoint Decomposition
Model. The algorithm randomly samples assignments from
a Dirichlet process mixture model by using Gibbs sampling
as presented in [13] (Algorithm 3). Here, we shall summarize
it using our notation.

The main idea behind the inference algorithm is to iter-
atively assign users to user-groups. At each iteration, each
user is randomly assigned to a group according to the prob-
ability that the user belongs to that group (this can also be
the group that the user already has been assigned to in the
previous iteration). Alternatively, again with a probability
that must be computed at each step, the user creates a new
user-group with the user being the only member. In later
iterations, other users may be assigned to that user-group
as well (with a given probability, as explained below). User-
groups that remain empty after an update step are deleted.

After each iteration over the users, the same procedure
is performed on the permissions, while the user-role assign-
ments are kept constant. The iterations cluster the original
user-permission assignment matrix x by alternately moving
whole rows and columns. Theoretically, Gibbs sampling al-
ways converges to the global optimum in the limit of infinite
time. Our algorithm terminates either upon convergence or
after reaching a predefined maximal number of iterations.

As described, the behavior of the Gibbs sampler is deter-
mined by the probability distributions over the assignments.
In each step, the Gibbs sampler successively calculates the
probabilities of the following K +1 exclusive events for each
user i′: assigning i′ to one of the K existing user-groups k
or creating a new role k = K + 1. To randomly assign a
user to an existing user group, we need only compare the
probabilities of different choices with respect to each other.
Hence, we only have to compute the probabilities up to a
constant factor.

p (zi′k =1 |x, zi6=i′,·,y) ∝ p (x | z,y) p (zi′k =1 | zi6=i′,·) (13)

When assigning the user i′ to the user-group k, the current
user-role assignments for all users other than i′ are used
to compute the probabilities.1 Note that the formula (13) is
written for sampling steps on the users. When the algorithm

1zpr(i),pc(k) is the matrix that contains the rows of z where
the predicate pr(i) holds and the columns where the predi-
cate pc(k) holds. Here · denotes the always true predicate.
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runs on permissions, then z must be replaced by y, k by l,
and i by j, throughout the formula.

In the following, we show how the probability parameters
are set in [9] for the terms of this equation. Probabilities of
the user-permission assignments are

p {ukl = 0 | z, y, β} = βkl

p {ukl = 1 | z, y, β} = 1− βkl . (14)

Thus, knowing the membership of users and permissions,
the probability of a user being assigned to a member of the
permission-group l is the same for all users of the role k. It
is the probability of the assignment ukl of the business role k
to the technical role l. Each βkl has a prior probability (the
probability of βkl to take a given value without knowing the
data) given by the Beta distribution Pb (βkl; γ, γ) with the
positive hyperparameter γ.

The term p (zi′k = 1 | zi6=i′,k) in the right-hand side of (13)
denotes the Dirichlet process [2, 6] that determines the a
priori probabilities of the assignments of users to business
roles without knowing the permissions for these users. This
term penalizes assignments according to the number of roles
and their cardinalities.

p (zi′k = 1 | zi6=i′,·) =

{
nk

N−1+α
nk > 0

α
N−1+α

nk = 0
(15)

It thereby decreases the probabilities of excessive creation
of unnecessary roles. In this way, the Dirichlet process im-
plements inference without knowing the number of roles in
advance. It can, in theory, generate an infinite number of
roles, but it penalizes unnecessary roles by weighting these
user-group probabilities proportional to their cardinality nk.
N is the total number of users and α is a nonnegative hy-
perparameter that can be interpreted as the cardinality that
each hypothetical role has in advance. To derive and explain
the Dirichlet process in detail is outside the scope of this pa-
per. In our context, just consider it as a weighting factor
that avoids the excessive creation of new roles.

The first term on the right-hand side of (13) is called ev-
idence. It denotes the probability p (x | z) of a particular
user given the assignments to a user-group. The complete
evidence for all users and permissions is computed from the
conditioned likelihood as in (12) and the Beta distribution
Pb (βkl; γ, γ) and is

p (x | z, y) =
∏

k,l

Beta(n
(1)
kl + γ, n

(0)
kl + γ)

Beta(γ, γ)
. (16)

Here Beta(., .) is the Beta function (also known as “Euler
integral of the first kind”) that appears in the Beta distri-
bution Pb (.; ., .) as a normalization factor.

In summary, the algorithm assigns rows of the user-permis-
sion assignment matrix (users) to groups where the other
rows (members of the same group) are similar to that row.
For such groups, the assignment probability distributions
have very sharp maxima compared to other suboptimal as-
signments. These random assignments are computed by al-
ternating iterations over the rows and columns, as can be
seen in the box below. Thus, the assignment matrix itera-
tively becomes more clustered.

The matrices in Figure 2 illustrate how this procedure
looks in practice. Rows are users, columns are permissions,
and dots indicate assignments between users and permis-
sions. The assignments in (a) are randomly generated ac-

cording to the general model (7). The roles are then inferred
with the Disjoint Decomposition Model (11). Since all busi-
ness roles and all technical roles are disjoint, the original
matrix can be ordered according to the members of their
entities, as depicted in (b). As described in Section 4.2, er-
roneous assignments and missing assignments can easily be
identified in this arrangement. They could be reported or
even automatically removed if desired, as shown in (c).

input : binary matrix x as defined in Section 3,
α, γ, itermax and dmin

output: role assignment matrices z and y as
defined in Section 3

z← 0; zi1 ← 1, for all i1

y← 0; y1j ← 1, for all j2

for iter ← 1 to itermax do3

zold ← z; yold ← y4

for i← 1 to M do5

zik ← 0, for all k6

zik ← 1, for one k sampled from Eq. 137

end8

for j ← 1 to N do9

ylj ← 0, for all l10

ylj ← 1, for one l sampled from Eq. 1311

end12

if
(
dmin <d

(
zold, z

))
∧
(
dmin <d

(
yold,y

))
then13

break14

end15

end16

As outlined in the box above, in every iteration of the main
loop, the function d(·, ·) computes the fraction of entries of
the current assignment matrices y and z that differ from
their last state. The loop repeats until either the assignment
matrices converge to a stable configuration or it breaks after
a predefined maximal number of iterations.

4.2 Error Detection and Subpartitioning
The algorithm just described infers the assignments of

users to user-groups and permission to permission-groups.
These are the assignment matrices z and y. We now ex-
plain how we determine the assignments between business
roles and technical roles u given z and y.

A pair consisting of a user-group and a permission-group
(business role and technical role) is called a bicluster. Each

bicluster has one empirical estimator β̂kl of the probabil-
ity that the entire user-group is assigned to the permission-
group. All members of this bicluster share this assignment

probability β̂kl = (n
(1)
kl +γ)/(n

(1)
kl +n

(0)
kl +2γ). Based on β̂kl,

one must decide whether to set the corresponding ukl to 1
or 0. To solve this, we employ the threshold ǫ,

ukl =

{

1 β̂kl ≥ 1− ǫ

0 β̂kl < 1− ǫ ,
(17)

where ǫ is the noise ratio that we expect in the data. This
is the estimated percentage of wrong assignments that do
exist in the original user-permission assignment matrix x.
Given β̂kl, we can identify erroneous or missing assignments
and automatically correct them or alert an administrator to
check these inconsistencies. As an example, if we assume 5%
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Figure 2: a) Illustration of a randomly generated user-permission assignment matrix. b) Users and permis-
sions ordered according to the result of the Gibbs sampling algorithm for the Disjoint Decomposition Model
(DDM). c) Possibly erroneous assignments detected.

noise in the data and find a bicluster with β̂kl = 0.98, then
the 2% of missing assignments are very likely to be errors.
Figure 2(c) provides an example of an assignment matrix
after correcting such errors.

We denote a user-group to permission-group assignment
with probability β̂kl, where ǫ < β̂kl < 1−ǫ, as an“indifferent
bicluster”. This means that, for the probability β̂kl, the
deviation of this indifferent bicluster from a pure bicluster
cannot be explained by the overall noise in the data. There
are instead two alternative explanations:

1. There is actually no structure for the assignments within
the bicluster. All assignments are exceptions. All miss-
ing assignments are intentionally missing.

2. The underlying structure within the bicluster was not
discovered by the Gibbs sampler. The assignments of
users to user-groups in a given sampling step are ran-
domly drawn according to the probabilities of the user
being assigned to that role. These probabilities fac-
tor into a product over the evidence (16) of all the
permission-groups that the permissions of the user are
assigned to. Members of indifferent biclusters (k′, l′)
have very high factors in (16) for their parts lying
within the neighboring biclusters (k′, l 6= l′). Thus,
the probability for them to be reassigned to their user-
group k′ is very high. As a result, in every iteration,
these members are again reassigned, even if a small
fraction of their permissions lies within a suboptimal
bicluster (k′, l′).

A pragmatic way to check for both cases is to partition the
given bicluster into smaller biclusters. This can be done
by considering all user-permission assignments within the
bicluster as a smaller independent assignment matrix x′ and
to run the algorithm again independently on x′. If there is
a structure that is hidden by the neighbors, this procedure
will discover it. If not, the algorithm will return the identical
result as before.

An alternative way to enforce splits would be to choose a
very high hyperparameter α for the Dirichlet process. How-
ever, this parameter choice renders the rough structure of
the data nearly invisible to the algorithm and results in a
high number of very small roles. In contrast, independent
subpartitioning preserves the large-scale structure and can

Figure 3: Extension of the Disjoint Decomposition
Model to independent sub-roles. For each pair of
business-role and technical-role, the corresponding
members may also belong to subroles.

simultaneously find focused roles for more specialized users
(or rarely used permissions).

Extending the model to the concept of subpartitions or
focused roles leads to a model structure that differs slightly
from the original Disjoint Decomposition Model. Originally,
each user is constrained to only one business role. This as-
sumption still holds for the dominant roles themselves, but
now additionally for each user-group permission-group pair
(for each bicluster) the members may be additionally as-
signed to (a single!) focused bicluster. Figure 3 illustrates
this structure. The focused role assignments are inferred
independently from the rest of the data successively after
the main assignments are found. Therefore, both decompo-
sitions are independent of each other and the original con-
straints still hold within each level of the model. Also, there
are no assignments between focused business roles and dom-
inant technical roles and vice-versa.

4.3 Experiments
In this section, we assess the performance of the Gibbs

sampler for the Disjoint Decomposition Model (DDM) in
comparison with the combinatorial algorithm “Discrete Ba-
sis Problem solver” (DBPsolver) [12]. We perform experi-
ments using both randomly-generated data and real enter-
prise data. Our experiments are with respect to two mea-
sures. For the random data, we measure how good the re-
sulting roles represent the generated data under the influ-
ence of randomly changed assignments (noise). This is an
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Figure 4: Differences to the correct user-permission assignment matrix. The dashed line represents the
DBPsolver and the solid line the Gibbs sampler for the Disjoint Decomposition Model (DDM). The thin
lines give the standard deviation over all runs. Both methods approximate an erroneous assignment matrix
with a varying percentage of errors (noise). The left plot gives the ratio of missing assignments after the
approximation and the right plot the ratio of wrong assignments.

appropriate measure as synthetic datasets enable us to test
the algorithms by comparison with the ground truth. For
actual enterprise data, this comparison is not possible and
for these experiments we introduce a measure that we can
evaluate based on the significance of the roles.

In the following experiments, we also present results us-
ing the “Discrete Basis Problem solver”, presented in [12].
This allows us to compare our results with a state-of the
art approach. This algorithm was designed to solve the Dis-
crete Basis Problem, which is equivalent to the role mining
problem as shown in [11]. We outline it in the appendix.
Given its combinatorial nature, this algorithm is represen-
tative for most existing approaches (see Section 2). Most
methods initially compute proposed roles with respect to
co-occurrences of permissions and then pick from this set in
a greedy manner.

Assessment on Synthetic Data.
We generate a user-permission assignment matrix x ac-

cording to the general model described in Section 3.1. For
a fixed number of 200 users, 200 permissions, 10 business-
roles, and 5 technical roles, the assignments were generated
as follows. For each user, the memberships in one or more
business-roles are randomly drawn and indicated in the as-
signment matrix z. Similarly, memberships in one or more
technical roles are drawn for each permission (thereby cre-
ating y). Finally, assignments between business roles and
technical roles are randomly drawn (u). The final user-
permission assignment matrix x is then x = z ⊗ u ⊗ y. In
order to simulate a real-world setting, we add errors to this
matrix by randomly flipping a given fraction of the entries
of x from one to zero or from zero to one. This results in
both erroneous and missing assignments. In the following,
we will refer to this random errors as noise. In Figure 2(a),
one can see a user-permission assignment matrix x that has
been generated this way (for illustrative purposes we have
chosen a lower number of users and permissions for this fig-
ure). In principle, one could also generate structured noise,
i.e. complete roles that are wrong or missing. However, since
these are exactly the patterns the algorithms are searching
for, they would have no chance to discriminate them from
valid structures (if there is no side information from other

sources) and this in turn would not allow for a comparison
of the methods.

On the generated assignment matrix x, we performed role-
mining using the algorithm for the Disjoint Decomposition
Model (DDM) and the Discrete Basis Problem solver (DBP-
solver). Since the DBPsolver does not infer the number of
roles K itself, we must set that number in advance. We do
this by simply computing the results for K ranging from 1
to 100 and pick the best result according to DBPsolver’s
objective function. A maximum number of 100 roles is rea-
sonable considering that the randomly generated data has
at most 10 business roles and 5 technical roles. An average
run with DBPsolver (for the best K only), implemented in
C++, requires 1.3 seconds. DDM, with a much less efficient
MATLAB implementation, needs 40 seconds. An example of
a user-permission assignment matrix approximated by DDM
is given in Figure 2(c).

From the two resulting approximations of the noisy user-
permission assignments matrix, we compute the differences
to the original noiseless matrix (the ground truth). The
measures that we use to compare the two approaches are
the relative number of assignments that have been added
with respect to the ground truth (the ratio of wrong assign-
ments) and the relative number of assignments that have
been removed with respect to the ground truth (the ratio of
missing assignments). These two quantities have a different
security-relevance. Granting someone a permission that he
should not have is usually more serious than not assigning a
permission that he should have. The former may result in a
security breach whereas the latter will typically only result
in a call to the help desk, when the missing permission is ac-
tually needed. Since this relevance is domain dependent, we
refrain from merging them into a single performance mea-
sure and collect them separately.

Discussion for the Synthetic Data.
In Figure 4, the described quality measures are plotted

versus the noise level in the generated assignment matrix
x. This noise level runs from 0% to 20%. Both plots have
the same scale. As indicated in the left plot, the DBPsolver
can cover every existing assignment to roles up to a noise
level of 12%. In doing so, it even covers the assignments
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that are missing in the original data due to noise. However,
this can only be done at the cost of granting wrong per-
missions, as can be seen by comparison with the right plot:
At noise levels where coverage is good, there is a high per-
centage of wrong assignments, up to 9% of the total number
of assignments. Due to this tradeoff, the two curves of the
DBPsolver run contrary to each other. The problem is that
the algorithm is unable to identify noise. It can only decide
between having a very good coverage at the cost of wrong
assignments or avoiding wrong assignments at the cost of
poor coverage.

As we see, DDM’s results vary only slightly over the entire
noise range. One can conclude that it is very robust to er-
roneous data. As one can clearly see in the right plot, DDM
produces a strictly conservative approximation of the origi-
nal assignments. No additional permissions with respect to
the ground truth are granted. The only added permissions
are those that have been missing in the noisy data. In turn,
all wrong permissions of the original data are discovered and
set to zero. The ratio of true assignments that are missed
by DDM are, on average, 2% over the whole scale. For high
noise levels this is superior to DBPsolver. For DDM there is
no tradeoff between coverage and conservativeness. It only
adds assignments if there is high evidence that an assign-
ment is missing due to an error.

In summary, the results of DDM are more robust to noise
than those of DBPsolver. This is desirable, since, in a real
domain, one usually does not know how many errors are in
the existing user-permission assignments. Even more impor-
tant, DDM finds and corrects for wrong assignments while
DBPsolver migrates them. For small noise levels, the DBP-
solver achieves higher coverage rates while for high noise
levels DDM is superior. Over the entire noise range, DDM
is better at avoiding wrong assignments.

Assessment on Real-World Data.
The data set that we use for our experiments is provided

by a large enterprise. It consists of 5000 users and 1323 per-
missions and it is a randomly picked subset of all users within
one division of the enterprise. The Gibbs sampling algorithm
on the Disjoint Decomposition Model needs roughly 5 hours
to infer roles, whereas DBPsolver needs approximately one
hour for a run with a given number of roles. Assuming
5% noise in the data, the Gibbs sampler for the Disjoint
Decomposition model finds 65 dominant business roles and
303 technical roles and covers 87% of the assignments. In
addition to the assignments, the model also obtains evidence
on where there should be definitely no assignments. By us-
ing both kinds of information, the assignment matrix can be
covered with tiles of ones and zeros. This result allows us to
measure a coverage rate for the full assignment matrix. For
the evaluated data, this rate is 95%. The large difference to
the coverage of only the assignments results from two facts:
(1) The given assignment matrix is very sparse and there-
fore large tiles of zeros can be found. (2) The inference of
the assignments between business roles and technical roles is
very conservative. In other words, for indifferent biclusters
without substructure, the assignment ukl between the user-
group k and the permission-group l is 0. The assignments
within such biclusters must be checked manually for errors
or they can be assigned individually.

Since the DBPsolver is unable to infer the number of roles
by itself, one must provide this number in advance. Thus,

the coverage can be as high as the experimenter desires.
In order to be able to compare the coverage rates, we ran
an example for K = 300. With this number of roles, 98%
coverage is achieved, which is a very good approximation
of the existing assignments. This provides evidence that
approximating given assignments without considering errors
is the strength of the DBPsolver.

However, in contrast to the experiments with generated
data, we do not know about the errors in the existing as-
signments here. Therefore, comparing algorithms just with
respect to their coverage may lead to incorrect conclusions.
There is no benefit in representing the data with 100% cov-
erage if a substantial fraction of the data is erroneous. The
evaluation with the synthetic data has shown that, in these
cases, a conservative estimator may lead to better results by
identifying errors and correcting for them.

Therefore, we instead compare the algorithms with re-
spect to another quantity: the ability to infer meaningful
roles. To do this, we must first define a measure of “mean-
ingfulness”. What features render a role mining result in-
teresting? An elementary assumption in bottom-up role en-
gineering is that the existing user-permission assignments
in a domain mirror, in some way, the actual tasks that the
users in the domain have. In turn, the roles that are con-
structed should be representative for a particular subset of
business tasks. This is a prerequisite if the roles are to be
conveniently maintained and to facilitate the addition of new
users. The measure of interestingness that we introduce here
is based on these considerations.

If there is side information (features) f available for the
users that gives insight in the task structure of the domain,
then the inferred roles should be as informative as possi-
ble for these features. In order to maximize this mutual
information[3] I(z, f) = H(z) − H(z |f) between roles and
features, the overall role entropy given the features H(z |f)
has to be minimal.

H(z |f) = −
∑

ν

p (fν)
∑

k

p (z·,k | fν) log (p (z·,k | fν))

=
∑

ν

p (fν) Hz

ν = Ef [Hz

ν ] (18)

We call Hz

ν the role entropy of a feature fν for user-role as-
signments z. It measures how homogeneous the users having
the feature fν are distributed over all inferred roles. Ef [Hz

ν ]
denotes the expectation value of Hz

ν . A good role mining
result should decompose the features by roles as best possi-
ble leading to low role entropies. With this objective, such
side information could, in principle, be used for a hybrid
bottom-up/top-down role mining approach using one of the
described model instances. However, this will be subject
of future work. For the moment, we just use this measure
to assess pure bottom-up role mining results. Any feature
providing information about the task structure of the enter-
prise, can be used in this manner to evaluate user-groups or
business roles.

Results for Real-World Data.
In addition to the user-permission assignments, the data

set that we received from our industry partner also con-
tains a job code for each of the users provided by Human
Resources. A job code is a number jci assigned to a user
according to his contract type (e.g., secretary, division man-
ager, CEO). Each user has a single job code. Therefore, by
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Figure 5: Analysis of the job code distribution over inferred roles. The two histograms show the role entropy
Hz

ν of contract types (the job codes) that the users have. Job codes with lower entropy are better represented
by the inferred roles. The black histogram gives the role entropies of a role system found by statistical
analysis with the Disjoint Decomposition Model. The white histogram displays the entropies for DBPsolver.

writing jci we intentionally use the same index as for the
users. In total, there are 724 job codes.

Assuming that the contract type provides information on
what the tasks of a user are, we can use the job codes as
features, i.e., the side information discussed above. A good
role system captures this job code structure of the users via
its inferred user-groups. Ideally, most user-groups can be
identified as sets of users with the same job code. In turn,
the job codes are assigned to only a few user-groups, leading
to a small role entropy Hz

ν .
The histograms of the role entropy in Figure 5 illustrate

how often job codes are distributed over the roles, both by
the DDM and the DBPsolver. The entropies of roles found
by DDM are clearly lower on average than the entropies of
roles found by DBPsolver. With the DDM, there are many
job codes whose users end up in only a single role (Hz

ν = 0),
which is highly desirable. In these cases, one could imag-
ine adding access control information for new employees to
a system based just on their contract type. The distribu-
tion of the DBPsolver roles is very flat and is centered at
a high entropy. This indicates that very specific permis-
sions (e.g., for specialized tasks) have been combined with
common permissions (e.g., to use standard office software)
into synthetic roles that do not capture the heterogeneous
permission structure of the domain.

In summary, DDM finds more meaningful roles than DBP-
solver with respect to the role entropy. This provides evi-
dence that the variety of roles found by our probabilistic
approach better represents the inherent business structure
of the enterprise. Such roles are less synthetic and are easier
to interpret as representatives of particular tasks within the
enterprise.

5. CONCLUSION
We have derived a class of probabilistic models from the

logical structure of RBAC, which are capable of represent-
ing different domain requirements. Algorithmically, we have
shown how to estimate model parameters for one particular,
practically important, model in this class, using an off-the-

shelf machine-learning algorithm. We have designed exper-
iments using both synthetic and real-world data that allow
us to measure our approach’s performance and compare it to
a state-of-the-art alternative. The experimental results pro-
vide strong evidence that probabilistic role engineering out-
performs existing combinatorial approaches, as represented
by the DBPsolver in this study. In particular, our approach
can identify potentially wrong or missing assignments in ex-
isting data and automatically correct them. Moreover, the
inferred roles are closely correlated with the business func-
tions in an enterprise, which substantially facilitates RBAC
administration.

Several directions of research emerge from our study of
probabilistic role mining. First, we will develop learning
algorithms for inferring roles for the other models in our
model class. Second, our model can be extended to a hybrid
bottom-up/top-down approach. We will investigate ways to
use existing business-relevant data, for instance enterprise
hierarchies or employee job codes, for such an extension.
Finally, with security administration in mind, we will in-
vestigate ways to facilitate the addition of new users and
permissions to an existing RBAC system. In principle, a
model that supports generalization should be able to endow
a new user with the required permissions from limited infor-
mation about that user, e.g., a small representative subset
of privileges.
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APPENDIX

The Discrete Basis Problem Solver.
A M ×N matrix x must be approximated by the M ×K

matrix z and the K × N matrix u via the Boolean matrix
product x = z ⊗ u, for a given K. The rows of x are in-
terpreted as sets of items (here, users characterized by their
sets of permissions), the rows of u are the basis sets (the
roles), and the rows of z indicate which basis sets are used
to approximate a row of x (the roles a user is assigned to).

In an initial step, the algorithm computes a set of can-
didate roles using association rule mining [1]: An N × N
association matrix A is computed whose entries Aj1j2 are
the pairwise associations between permissions j1 and j2:
Aij := 〈x.j1 , x.j2〉 / 〈x.j1 , x.j1〉 with the inner product 〈., .〉.
In our notation, Aj1j2 is the empirical probability for a user
to have permission j2 given that he already has permission
j1. Before starting with a greedy algorithm, all entries of
Aj1j2 higher than a threshold τ are set to 1 and the others
are set to 0.

Starting from this point, the rows of the role-matrix u are
iteratively filled by the rows of A and the user-role assign-
ments in z are set. In the kth step, both a row from A is
picked as uk. and the entries of z.k are set such that the
objective function

R
(
x, z,u, w+, w−

)
=w+

∣
∣
∣

{

(i, j) : xij = 1 ∧ (z⊗ u)
ij

= 1
}∣
∣
∣

− w−
∣
∣
∣

{

(i, j) : xij = 0 ∧ (z⊗ u)
ij

=1
}∣
∣
∣

is maximized. This objective function aims at best cover-
ing the existing assignments while avoiding additional as-
signments. The parameters w+ and w− penalize missing
assignments and additional assignments respectively.
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